Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T01:17:13.929Z Has data issue: false hasContentIssue false

Evolutionary and taphonomic implications of a new species of Amphoracrinus from the early Viséan of Kentucky

Published online by Cambridge University Press:  02 July 2021

William I. Ausich
Affiliation:
Department of Geological Sciences, 155 South Oval Mall, The Ohio State University, Columbus, Ohio43210, USA
Steven C. Koenig
Affiliation:
Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky40202, USA Department of Bioengineering, University of Louisville, Louisville, Kentucky40292, USA
Alan Goldstein
Affiliation:
Falls of the Ohio State Park, 201 W. Riverside Drive, Clarksville, Indiana47129-3148, USA
Gretel Monreal
Affiliation:
Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky40202, USA

Abstract

The youngest species of Amphoracrinus, A. tenax new species, is described from the Muldraugh Member of the Borden Formation (early Viséan) of north-central Kentucky. With this new occurrence, both the oldest and youngest named species of Amphoracrinus are from North America. Numerous Tournaisian and Viséan crinoid faunas are documented in the United States, but only four are known to contain Amphoracrinus. Morphological analysis indicates that A. tenax is more closely aligned with species from China than with species from Western Europe or other species from North America, where Amphoracrinus was most diverse and abundant, which has implications for understanding paleogeographic dispersal. The holotype of A. tenax was partially disarticulated on the seafloor before burial, and final burial occurred early during disarticulation. The relative state of disarticulation from pinnules to columnals suggests that plates bound only with ligaments disarticulated as a function of surface area of ligaments binding an articulation.

UUID: http//zoobank.org/c7faf06e-bdd1-43a2-8c10-1364a0aeae0d

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P.A., 1990, Variation in rates of decay and disarticulation of Echinodermata: implications for the application of actualistic data: PALAIOS, v. 5, p. 432440.CrossRefGoogle Scholar
Ausich, W.I., 2021a, Glossary of patterns, abbreviations, and symbols to designate crinoid morphology, in Ausich, W.I., ed., Treatise Online no. 145, Part T, Revised, Chapter 6, 5 p., journals.ku.edu/treatiseonline/article/view/15161Google Scholar
Ausich, W.I., 2021b, Disarticulation and preservation of fossil echinoderms: recognition of ecological-time information in the echinoderm fossil record: Elements of Paleontology, 56 p., https://doi.org/10.1017/9781108893374Google Scholar
Ausich, W.I., and Baumiller, T.K., 1993, Taphonomic method for determining muscular articulations in fossil crinoids: PALAIOS, v. 8, p. 477484.CrossRefGoogle Scholar
Ausich, W.I., and Kammer, T.W., 2006, Stratigraphical and geographical distribution of Mississippian (lower Carboniferous) Crinoidea from England and Wales: Proceedings of the Yorkshire Geological Society, v. 56, p. 91109.CrossRefGoogle Scholar
Ausich, W.I., and Kammer, T.W., 2008a, Generic concepts in the Amphoracrinidae Bather, 1899 (class Crinoidea) and evaluation of generic assignments of North American species: Journal of Paleontology, v. 82, p. 11391149.CrossRefGoogle Scholar
Ausich, W.I., and Kammer, T.W., 2008b, Evolution and extinction of a Paleozoic crinoid clade: phylogenetics, paleogeography, and environmental distribution of the periechocrinids, in Ausich, W.I., and Webster, G.D., eds, Echinoderm Paleobiology: Bloomington, Indiana University Press, p. 144171.Google Scholar
Ausich, W.I., and Kammer, T.W., 2013, Mississippian crinoid biodiversity, biogeography, and macroevolution: Palaeontology, v. 56, p. 727740.CrossRefGoogle Scholar
Ausich, W.I., and Kammer, T.W., 2016, Exaptation of pelmatozoan oral surfaces: constructional pathways in tegmen evolution: Journal of Paleontology, v. 90, p. 689720.CrossRefGoogle Scholar
Ausich, W.I., and Lane, N.G., 1982, Crinoids from the Edwardsville Formation (Lower Mississippian) of southern Indiana: Journal of Paleontology, v. 56, p. 13431361.Google Scholar
Ausich, W.I., and Meyer, D.L, 1990, Origin and composition of carbonate buildups and associated facies in the Fort Payne Formation (Lower Mississippian, south-central Kentucky): an integrated sedimentologic and paleoecologic analysis: Geological Society of America Bulletin, v. 102, p. 129146.2.3.CO;2>CrossRefGoogle Scholar
Ausich, W.I., and Roeser, E.W., 2012, Camerate and disparid crinoids from the late Kinderhookian Meadville Shale Cuyahoga Formation from Ohio: Journal of Paleontology, v. 86, p. 488507.CrossRefGoogle Scholar
Ausich, W.I., and Sevastopulo, G.D., 1994, Taphonomy of lower Carboniferous crinoids from the Hook Head Formation, Co. Wexford, Ireland: Lethaia, v. 27, p. 245256.CrossRefGoogle Scholar
Ausich, W.I., and Sevastopulo, G.D., 2001, The lower Carboniferous (Tournaisian) crinoids from Hook Head, County Wexford, Ireland: Monograph of the Palaeontographical Society, v. 617, 136 p.Google Scholar
Ausich, W.I., Kammer, T.W., Lane, N.G., 1979, Fossil communities of the Borden (Mississippi) delta in Indiana and northern Kentucky: Journal of Paleontology, v. 53, p. 11821196.Google Scholar
Ausich, W.I., Goldstein, A., and Yates, R., 2000, Crinoids from the Muldraugh Member of the Borden Formation in north-central Kentucky (Echinodermata, Lower Mississippian): Journal of Paleontology, v. 74, p. 10721082.2.0.CO;2>CrossRefGoogle Scholar
Ausich, W.I., Kammer, T.W., and Mirantsev, G.V., 2020a, Carboniferous crinoids, in Lucas, S., Schneider, S.G., Wang, J.W., and Nikolaeva, S., eds., The Carboniferous Timescale: Geological Society of London Special Publications 512, https://doi.org/10.1144/SP512-2020-71Google Scholar
Ausich, W.I., Wright, D.F., Cole, S.R., and Sevastopulo, G.D., 2020b, Homology of posterior interray plates in crinoids: a review and new perspectives from phylogenetics, the fossil record, and development: Palaeontology, v. 63, p. 552–545.CrossRefGoogle Scholar
Austin, T., 1848, Observations on the Cystidea of M. von Buch, and the Crinoidea generally: Geological Society of London, Quarterly Journal, v. 4, p. 291294.CrossRefGoogle Scholar
Austin, T., and Austin, T., 1843–1847, A Monograph on Recent and Fossil Crinoidea, with Figures and Descriptions of Some Recent and Fossil Allied Genera, v. 1, 2, p. 1–32, pl. 1–4, frontispiece (1843); v. 3, p. 33–48, pl. 5, 6 (1844); v. 4, p. 49–64, pl. 7, 8 (1845); v. 5, p. 65–80, pl. 9, 10 (1846); v. 6–8, p. 81–128, pl. 1116 (1847); 128 p., 16 pl.Google Scholar
Bather, F.A., 1899, A phylogenetic classification of the Pelmatozoa: Report of the British Association for the Advancement of Science 68th Meeting, p. 916923.Google Scholar
Breimer, A., 1962, A monograph on Spanish Paleozoic Crinoidea: Overdruk uit Leidse Geologische Mededelingen, v. 27, 190 p.Google Scholar
Breton, G., 1997, Deux étoiles de mer du Bajocien du nord-est du basin de Paris (France): leur allies actuels sond des fossils vivants: Bulletin trimestriel de la Société Géologique de Normandie et des Amis du Museum du Havre, v. 84, p. 2334.Google Scholar
Brett, C.E., and Baird, G.C., 1986, Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation: PALAIOS, v. 1, p. 207227.CrossRefGoogle Scholar
Bronn, H.G., 1849, Index palaeontologicus, unter Mitwirking der Herren Prof. H.R. Göppert und H. von Meyer, Handbuch einer Geschichte der Nature, 5, Abt. 1, A: Nomenclator Palaeontologicus, 1381 p.Google Scholar
Caputo, M.V., de Melo, J.H.G., Streel, M., and Isbell, J.L., 2008, Late Devonian and early Carboniferous glacial records of South America, in Fielding, C.R., Frank, T.D., and Isbell, J.L., eds., Resolving the Late Paleozoic Ice Age in Time and Space: Geological Society of America Special Paper 441, p. 161173.CrossRefGoogle Scholar
Chen, Z.-T., and Yao, J.-H., 1993, Palaeozoic Echinoderm Fossils of Western Yunnan, China: Beijing, Geological Publishing House, 102 p.Google Scholar
Cole, S.R., 2017, Phylogeny and morphological evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata): Journal of Paleontology, v. 91, p. 815828.CrossRefGoogle Scholar
Delpey, G., 1941, Crinoîdes du viséen superieur dans le pays de Skouva, au Maroc: Bulletin de la Société des Sciences Naturelles du Maroc Rabat, v. 19, p. 214220Google Scholar
Donovan, S.K., Lewis, D.N., and Kabrna, P., 2006, A dense epizoobiontic infestation of a lower Carboniferous crinoid (Amphoracrinus gilbertsoni (Phillips)) by Oichnus paraboloides Bromley: Ichnos, v. 13, p. 4345.CrossRefGoogle Scholar
Goldfuss, G.A., 1826–1844, Petrefacta Germaniae, tam ea, Quae in Museo Universitatis Regiae Borussicae Fridericiae Wilhelmiae Rhenanea, serventur, quam alia quaecunque in Museis Hoeninghusiano Muensteriano aliisque, extant, iconibus et descriiptionns illustrata. -- Abbildungen und Beschreibungen der Petrefacten Deutschlands und der Angränzende Länder, unter Mitwirkung des Hern Grafen Georg zu Münster, herausgegeben von August Goldfuss, v. 1 (1826–1833), Divisio prima. Zoophytorum reliquiae, p. 1–114; Divisio secunda. Radiariorum reliquiae, p. 115–221 [Echinodermata]; Divisio tertia. Annulatorium reliquiae, p. 222–242; v. 2 (1834–1840), Divisio quarta. Molluscorum acephalicorum reliquiae. I. Bivalvia, p. 65–286; II. Brachiopoda, p. 287–303; III. (1841–1844), Divisio quinta. Molluscorum gasteropodum reliquiae, p. 1–121; atlas of plates, 1–199, Düsseldorf, Arnz & Co. v. 1, p. 1–76 (1826), p. 77–164 (1829), p. 165–240 (1831), p. 241–252 (1833); v. 2, p. 1–68 (1833), p. 69–140 (1836), p. 141–224 (1837), p. 225–312 (1840); v. 3, p. 1–128 (1844).Google Scholar
Gorzelak, P., Stolarski, J., Mazur, M., and Meibom, A., 2012, Micro- to nanostructure and geochemistry of extant crinoidal echinoderm skeletons: Geobiology, 15 p., https://doi.org/10.1111/gbi.12012Google ScholarPubMed
Grinnell, G.B., 1876, On a new crinoid form the Cretaceous formation of the West: American Journal of Science, v. 3, p. 8183.CrossRefGoogle Scholar
Hagdorn, H., 1978, Muschel/Krinoiden-Bioherme im Oberen Muschelkalk (mo1, Anis) von Crailsheim und Schwäbisch Hall (Süd-westdeutschland): Zeitschrift für Hobbypaläontologie Abhandlungen, v. 156, p. 3186.Google Scholar
Hagdorn, H., 1998, Traumatocrinus, eine long verkannte Seelilie aus der Triassic: Zeitschrift für Hobbypaläontologie Abhandlungen, v. 15, p. 269275.Google Scholar
Hall, J., 1862, Preliminary notice of some of the species of Crinoidea known in the Upper Helderberg and Hamilton groups of New York: New York State Cabinet of Natural History 15th Annual Report, p. 87125.Google Scholar
Hall, J., 1863, Preliminary notice, of some species of Crinoidea from the Waverly Sandstone series of Summit Co., Ohio, supposed to be of the age of the Chemung Group of New York: Preprint of Seventeenth Annual Report of the Regents of the University of the state of New-York, on the Condition of the State Cabinet of Natural History, and the Historical and Antiquarian Collection annexed thereto, State of New York in Senate Document 189, Albany, Comstock and Cassiday Printers, p. 5060.Google Scholar
Hammer, Ø., and Harper, D.A.T., 2006, Paleontological Data Analysis: Oxford, Blackwell, 352 p.Google Scholar
Hammer, Ø., Harper, D.A.T., and Ryan, P.D., 2006, PAST: Paleontological Statistics Software Package for Education and Data Analysis: Palaeontologica Electronica, v. 4, 9 p., https://palaeo-electronica.org/2001_1/past/issue1_01.htmGoogle Scholar
Hess, H., 1999, Middle Jurassic of northern Switzerland, in Hess, H., Ausich, W.I., Brett, C.E., and Simms, M.J., eds., Fossil Crinoids: Cambridge, Cambridge University Press, p. 203215.CrossRefGoogle Scholar
Kammer, T.W., 1984, Crinoids from the New Providence Shale Member of the Borden Formation (Mississippian) in Kentucky and Indiana: Journal of Paleontology, v. 58, p. 115130.Google Scholar
Kammer, T.W., and Ausich, W.I., 1987, Aerosol suspension feeding and current velocities: distributional controls for late Osagean crinoids: Paleobiology, v. 13, p. 379395.CrossRefGoogle Scholar
Kammer, T.W., and Ausich, W.I., 2006, The “Age of Crinoids”: a Mississippian biodiversity spike coincident with widespread carbonate ramps: PALAIOS, v. 21, p. 238248.CrossRefGoogle Scholar
Kammer, W. W., and Ausich, W. I., 2007, New cladid and flexible crinoids from the Mississippian (Tournaisian, Ivorian) of England and Wales: Palaeontology, v. 50, p.10391050.CrossRefGoogle Scholar
Kammer, T.W., and Matchen, D.L., 2008, Evidence for eustasy at the Kinderhookian–Osagean (Mississippian) boundary in the United States: response to late Tournaisian glaciation? in Fielding, C.R., Frank, T.D., and Isbell, J.L., eds., Resolving the Late Paleozoic Ice Age in Time and Space: Geological Society of America Special Paper 441, p. 261274.CrossRefGoogle Scholar
Kammer, T.W., and Roeser, E.W., 2012, Cladid crinoids from the late Kinderhookian Meadville Shale Cuyahoga Formation of Ohio: Journal of Paleontology, v. 86, p. 470487.CrossRefGoogle Scholar
Kammer, T.W., Ausich, W.I., and Goldstein, A., 2007, Gilmocrinus kentuckyensis n. sp. from the late Osagean (Mississippian) Muldraugh Member of the Borden Formation in Kentucky: a European immigrant originally derived from North America?: Journal of Paleontology, v. 81, p. 209212.CrossRefGoogle Scholar
Kammer, T.W., Sumrall, C.D., Zamora, S., Ausich, W.I., and Deline, B., 2013, Oral region homologies in Paleozoic crinoids and other plesiomorphic pentaradiate echinoderms. PLoS ONE, v. 8, n. 11, 16 p., https://dx.plos.org/10.1371/journal.pone.0077989CrossRefGoogle Scholar
Kepferle, R.C., 1977, Stratigraphy, Petrology, and Depositional Environment of the Kenwood Siltstone Member, Borden Formation (Mississippian), Kentucky and Indiana: U.S. Geological Survey Professional Paper 1007, 49 p.Google Scholar
Krivicich, E.B., Ausich, W.I., and Meyer, D.L., 2014, Crinoid assemblages from the Fort Payne Formation (late Osagean, early Viséan, Mississippian) from Kentucky, Tennessee, and Alabama: Journal of Paleontology, v. 88, p. 11541162.CrossRefGoogle Scholar
Lane, N.G., 1963, The Berkeley crinoid collection from Crawsfordsville, Indiana: Journal of Paleontology, v. 3, p. 10011008.Google Scholar
Lane, N.G., 1973, Paleontology and paleoecology of the Crawfordsville fossil site (upper Osagian. Indiana): California University Publications in the Geological Sciences, v. 99, 141 p.Google Scholar
Lane, N.G., and Burke, J.J., 1976, Arm movement and feeding mode of inadunate crinoids with biserial muscular arm articulations: Paleobiology, v. 2, p. 202208.CrossRefGoogle Scholar
Lane, N.G., and DuBar, J.R., 1983. Progradation of the Borden delta: new evidence from crinoids: Journal of Paleontology, v. 57, p. 112123.Google Scholar
Lane, N.G., Waters, J.A., and Maples, C.G., 1997, Echinoderm faunas of the Hongguleleng Formation, Late Devonian (Famennian), Xinjiang-Uygur Autonomous Region, People's Republic of China: Journal of Paleontology, v. 71, no. S47, p. 143.CrossRefGoogle Scholar
Liddell, W.D., 1975, Recent crinoid biostratinomy: Geological Society of America, Abstracts with Programs, v. 7, p. 1169.Google Scholar
Lister, M., 1673, A description of certain stones figured like plants, and by some observing men esteemed to be plants petrified: Philosophical Transactions of the Royal Society of London, v. 100, p. 61816191.Google Scholar
Maples, C.G., and Archer, A.W., 1989, Paleoecological and sedimentological significance of bioturbated crinoid calyces: PALAIOS, v. 4, p. 379383.CrossRefGoogle Scholar
M'Coy, F., 1849, On some new Paleozoic Echinodermata: Annals and Magazine of Natural History, ser. 2, v. 3, p. 244254.CrossRefGoogle Scholar
Meyer, D.L., 1971, Post-mortem disarticulation of Recent crinoids and ophiuroids under natural conditions: Geological Society of America Abstracts with Programs, v. 3, p. 645.Google Scholar
Meyer, D.L., and Milsom, C.V., 2001, Microbial sealing in the biostratinomy of Uintacrinus Lagerstätten in the Upper Cretaceous of Kansas and Colorado, USA: PALAIOS, v. 16, p. 535546.2.0.CO;2>CrossRefGoogle Scholar
Meyer, D.L., and Oji, T., 1992, Experimental taphonomy of a Recent stalked crinoid: implications for the crinoid fossil record: Geological Society of America Abstracts with Programs, v. 24, p. 55.Google Scholar
Meyer, D.L., Tobin, R.C., Pryor, W.A., Harrison, W.B., and Osgood, R.G., 1981, Stratigraphy, sedimentology, and paleoecology of the Cincinnatian Series (Upper Ordovician) in the vicinity of Cincinnati, Ohio, in Roberts, T.G., ed., Geological Society of America, Cincinnati 1981, Field Trip Guidebooks, v. 1: American Geological Institute, p. 3171.Google Scholar
Miller, J.S., 1821, A Natural History of the Crinoidea or Lily-shaped Animals; with Observations on the Genera Asteria, Euryale, Comatula and Marsupites: Bristol, Bryan & Co., 150 p.Google Scholar
Miller, S.A., and Gurley, W.F.E., 1896a, Description of new and remarkable fossils from the Palaeozoic rocks of the Mississippi Valley: Illinois State Museum Bulletin 8, p. 165.Google Scholar
Miller, S.A., and Gurley, W.F.E., 1896b, New species of Echinodermata and a new crustacean from the Palaeozoic rocks: Illinois State Museum Bulletin 10, p. 191.Google Scholar
Milsom, C.V., Simms, M.J., and Gale, A.S., 1994, Phylogeny and palaeobiology of Marsupites and Uintacrinus: Palaeontology, v. 37, p. 595607.Google Scholar
Moore, R.C., and Laudon, L.R., 1943, Evolution and classification of Paleozoic crinoids: Geological Society of America Special Paper 46, 154 p.CrossRefGoogle Scholar
Moore, R.C., and Teichert, C., eds., 1978, Treatise on Invertebrate Paleontology, Part T, Echinodermata 2: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, 1027 p.Google Scholar
Neugebaurer, J., 1978, Micritization of crinoids by diagenetic dissolution: Sedimentology, v. 25, p. 267283.CrossRefGoogle Scholar
Nicoll, R.S., and Rexroad, C.B., 1975, Stratigraphy and conodont paleontology of the Sanders Group (Mississippian) in Indiana and adjacent Kentucky: Indiana Geological Survey Bulletin 51, 36 p.Google Scholar
Peterson, W.L., and Kepferle, R.C., 1970, Deltaic deposits of the Borden Formation in central Kentucky: U.S. Geological Survey Professional Paper 700-D, p. D49–D54.Google Scholar
Phillips, J., 1836, Illustrations of the Geology of Yorkshire, or a Description of the Strata and Organic Remains. Pt. 2, The Mountain Limestone Districts (second edition): London, John Murray, p. 203308.Google Scholar
Rhenberg, E.C., and Kammer, T.W., 2013, Camerate crinoids from the Nunn Member (Tournaisian, Osagean) of the Lower Mississippian Lake Valley Formation, New Mexico: Journal of Paleontology, v. 87, p. 312340.CrossRefGoogle Scholar
Richardson, J.G., and Ausich, W.I., 2004, Miospore biostratigraphy of the Borden delta (Lower Mississippian; Osagean) in Kentucky and Indiana, USA: Palynology, v. 28, p. 159174.CrossRefGoogle Scholar
Rofe, J., 1865, Notes on some Echinodermata from the Mountain Limestone, etc.: Geological Magazine, v. 2, p. 245252.CrossRefGoogle Scholar
Sable, E.G., and Dever, G.R. Jr., 1990, Mississippian rocks in Kentucky: U.S. Geological Survey Professional Paper 1503, 125 p.CrossRefGoogle Scholar
Sable, E.G., Kepferle, R.C., and Peterson, W.L., 1966, Harrodsburg Limestone in Kentucky. Contributions to Stratigraphy: Geological Survey Bulletin 1224-I, 12 p.Google Scholar
Seilacher, A., Drozdzewski, G., and Haude, R., 1968, Form and function of the stem in a pseudoplanktonic crinoid (Seirocrinus): Palaeontology, v. 11, p. 275282.Google Scholar
Seilacher, A., Reif, W.E., and Westphal, F., 1985, Sedimentological, ecological and temporal patterns of fossil Lagerstätten: Philosophical Transactions of the Royal Society of London B, v. 311, p. 523.Google Scholar
Simms, M.J., 1986, Contrasting lifestyles of Lower Jurassic crinoids: a comparison of benthic and pseudopelagic Isocrinida: Palaeontology, v. 29, p. 475493.Google Scholar
Springer, F., 1901, Uintacrinus: its structure and relations: Memoirs of the Museum of Comparative Zoology, Harvard University, v. 25, p. 189.Google Scholar
Struve, W., 1957, Ein Massengrab kreidezeitlicher Seelilien: die Uintacrinus-Platte des Senckenberg-Museums: Natur und Volk, v. 87, p. 361373.Google Scholar
Swofford, D.L., 2015, PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0a142. http://phylosolutions.com/paup-test.Google Scholar
Taylor, W., and Brett, C.E., 1996, Taphonomy and paleoecology of echinoderm Laterstätten from the Silurian (Wenlockian) Rochester Shale: PALAIOS, v. 11, p. 118140.CrossRefGoogle Scholar
Ubaghs, G., 1978a, Camerates, in Moore, R.C., and Teichert, C., eds., Treatise on Invertebrate Paleontology, Part T, Echinodermata 2: Geological Society of America and University of Kansas Press, p. T409T519.Google Scholar
Ubaghs, G., 1978b, Skeletal morphology of fossil crinoids, in Moore, R.C., and Teichert, C., eds., Treatise on Invertebrate Paleontology, Part T, Echinodermata 2: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. T58T216.Google Scholar
Van Sant, J.F., and Lane, G.N., 1964, Crawfordsville (Indiana) crinoid studies: University of Kansas Paleontological Contributions, Article 35, Echinodermata 7, 136 p.Google Scholar
Wachsmuth, C., and Springer, F., 1880–1886, Revision of the Palaeocrinoidea, Part 2, Family Sphaeroidocrinidae, with the sub-families Platycrinidae, Rhodocrinidae, and Actinocrinidae; Part 3, Section 1, Discussion of the classification and relations of the brachiate crinoids, and conclusions of the generic descriptions: Proceedings of the Academy of Natural Sciences of Philadelphia, 1881, p. 177–411 (Part 2); 1885, p. 225–364 (Part 3).Google Scholar
Walker, L.J., Wilkinson, B.H., and Ivany, L.C., 2002, Continental drift and Phanerozoic carbonate accumulation in shallow-shelf and deep-marine settings: Journal of Geology, v. 110, p. 7587.CrossRefGoogle Scholar
Waters, J.A., Maples, C.G., Lane, N.G., Marcus, S., Liao, Z-T., Liu, L., Hou, H-F., and Wang, J-X., 2003, A quadrupling of Famennian pelmatozoan diversity: new Late Devonian blastoids and crinoids from northwest China: Journal of Paleontology, v. 77, p. 922948.2.0.CO;2>CrossRefGoogle Scholar
Waters, J.A., Marcus, S.A., Maples, C.G., Lane, N.G., Hou, H., Liao, Z.-T., Wang, J.-X., and Liu, L., 2008, Overview of Paleozoic stemmed echinoderms from China, in Ausich, W.I., and Webster, G.D., eds., Echinoderm Paleobiology: Bloomington, Indiana University Press, p. 346367.Google Scholar
Webster, G.D., 1974, Crinoid pluricolumnal noditaxis patterns: Journal of Paleontology, v. 48, p. 12831288.Google Scholar
Webster, G.D., and Lane, N.G., 1987, Crinoids from the Anchor Limestone (Lower Mississippian) of the Monte Cristo Group southern Nevada: University of Kansas Paleontological Contributions Paper 119, 55 p.Google Scholar
Webster, G.D., and Waters, J.A., 2009, Late Devonian echinoderms from the Hongguleleng Formation of northwestern China, in Königshof, P., ed., Devonian Change: Case Studies in Palaeogeography and Palaeoecology: The Geological Society of London Special Publications, v. 314, p. 263287.Google Scholar
Webster, G.D., Maples, C.G., Sevastopulo, G.D., Frest, T., and Waters, J.A., 2004, Carboniferous (Viséan–Moscovian) echinoderms from the Béchar Basin area of western Algeria: Bulletins of American Paleontology, no. 368, 98 p.Google Scholar
Webster, G.D., Waters, J.A., and Chen, X., 2009, Revision of the Chen and Yao Devonian to Permian crinoids from Western Yunnan: Palaeobiodiversity and Palaeoenvironments, v. 89, p. 119160.CrossRefGoogle Scholar
Wiley, E.O., and Lieberman, B.S., 2011, Phylogenetics: Theory and Practice of Phylogenetic Systematics: Wiley-Blackwell, 432 p.CrossRefGoogle Scholar
Wright, D.F., 2017, Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata): Journal of Paleontology, v. 91, p. 799814.CrossRefGoogle Scholar
Wright, D.F., Ausich, W.I., Cole, S.R., Peter, M.E., and Rhenberg, E.C., 2017, Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata): Journal of Paleontology, v. 91, p. 829846.CrossRefGoogle Scholar
Wright, J., 1943, Pimlicocrinus gen. nov. and two new species of Amphoracrinus from the Carboniferous Limestone: Geological Magazine, v. 80, p. 8194.CrossRefGoogle Scholar
Wright, J., 1950–1960, The British Carboniferous Crinoidea. Palaeontographical Society Monograph, v. 1, no. 1, p. 1–24, pl. 1–7, 1950; v. 1, no. 2, p. 25–46, pl. 8–12, 1951a; v. 1, no. 3, p. 47–102, pl. 13–31, 1951b; v. 1, no. 4, p. 103–148, pl. 32–40, 1952a; v. 1, no. 5, p. 149–190, pl. 41–47, 1954a; v. 2, no. 1, p. 191–254, pl. 48–63, 1955a; v. 2, no. 2, p. 255–272, pl. 64–67, 1955b; v. 2, no. 3, p. 273–306, pl. 68–75, 1956b; v. 2, no. 4, p. 307–328, pl. 76–81, 1958; v. 2, no. 5, p. 329–347, pl. A, B, 1960.Google Scholar