Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-18T02:51:59.490Z Has data issue: false hasContentIssue false

Four new species of the Jurassic to Cretaceous seep-restricted bivalve Caspiconcha and implications for the history of chemosynthetic communities

Published online by Cambridge University Press:  02 April 2018

Robert G. Jenkins
Affiliation:
School of Natural System, College of Science and Engineering, Kanazawa University, Kanazawa City, Ishikawa Prefecture 920-1192, Japan 〈robertgj@staff.kanazawa-u.ac.jp〉
Andrzej Kaim
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL−00−818 Warszawa, Poland 〈kaim@twarda.pan.pl〉
Yoshinori Hikida
Affiliation:
Nakagawa Museum of Natural History, 28-9 Yasukawa, Nakagawa Town, Hokkaido 098-2626, Japan 〈nmhikida@coral.ocn.ne.jp〉
Steffen Kiel
Affiliation:
Swedish Museum of Natural History, Department of Palaeobiology, Box 500 07 104 05 Stockholm, Sweden 〈steffen.kiel@nrm.se〉

Abstract

Four new species of the methane seep-inhabiting kalenterid bivalve genus Caspiconcha Kelly in Kelly et al., 2000 are described: Caspiconcha basquensis from the late Albian of northern Spain, C. yubariensis from the late Albian of northern Japan, C. raukumaraensis from the late Albian to mid-Cenomanian of New Zealand, and C. lastsamurai from the Campanian of northern Japan. The earliest confirmed record of the genus is known from the latest Jurassic. It reached its maximum diversity in the Albian and declined in diversity and abundance through the Late Cretaceous. The youngest species, C. lastsamurai, is currently known from a single specimen only.

UUID: http://zoobank.org/2f84cfd3-216c-4f1b-8c9f-c808a47f7aaa

Type
Articles
Copyright
Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agirrezabala, L.M., Kiel, S., Blumenberg, M., Schäfer, N., and Reitner, J., 2013, Outcrop analogues of pockmarks and associated methane-seep carbonates: A case study from the Lower Cretaceous (Albian) of the Basque–Cantabrian Basin, western Pyrenees: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 390, p. 94115.CrossRefGoogle Scholar
Aitken, S.A., Henderson, C.M., Collom, C.J., and Johnston, P.A., 2002, Stratigraphy, paleoecology, and origin of Lower Devonian (Emsian) carbonate mud buildups, Hamar Laghdad, eastern Anti-Atlas, Morocco, Africa: Bulletin of Canadian Petroleum Geology, v. 50, p. 217243.Google Scholar
Amano, K., and Kiel, S., 2007, Fossil vesicomyid bivalves from the North Pacific region: Veliger, v. 49, p. 270293.Google Scholar
Amano, K., and Kiel, S., 2012, Two Neogene vesicomyid species (Bivalvia) from Japan and their biogeographic implications: Nautilus-Sanibel, v. 126, p. 79.Google Scholar
Amano, K., Jenkins, R.G., Kurihara, Y., and Kiel, S., 2008, A new genus for Vesicomya inflata Kanie & Nishida, a Lucinid Shell Convergent with that of Vesicomyids, from Cretaceous Strata of Hokkaido, Japan: Veliger, v. 50, p. 255262.Google Scholar
Amano, K., Jenkins, R.G., Ohara, M., and Kiel, S., 2014, Miocene vesicomyid species (Bivalvia) from Wakayama in southern Honshu, Japan: The Nautilus, v. 128, p. 917.Google Scholar
Ascher, E., 1906, Die Gastropoden, Bivalven und Brachiopoden der Grodischter Schichten: Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, v. 19, p. 135167.Google Scholar
Bouchet, P., Rocroi, J.P., Bieler, R., Carter, J.G., and Coan, E.V., 2010, Nomenclator of bivalve families with a classification of bivalve families: Malacologia, v. 52, p. 4172.Google Scholar
Campbell, K.A., 2006, Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions: Palaeogeography Palaeoclimatology Palaeoecology, v. 232, p. 362407.Google Scholar
Campbell, K.A., and Bottjer, D.J., 1995a. Brachiopods and chemosymbiotic bivalves in Phanerozoic hydrothermal vent and cold seep environments: Geology, v. 23, p. 321324.Google Scholar
Campbell, K.A., and Bottjer, D.J., 1995b. Peregrinella: An Early Cretaceous cold-seep-restricted brachiopod: Paleobiology, v. 21, p. 461478.Google Scholar
Chavan, A., 1954, Les Pleurophorus et genres voisins: Cahiers Géologiques Seyssel, v. 22, p. 200.Google Scholar
Chavan, A., 1969, Superfamily Carditacea. Part N, Mollusca 6, in Moore, R.C., ed., Treatise on Invertebrate Paleontology: Lawrence, Geological Society of America and University of Kansas Press, p. N543N548.Google Scholar
Cox, L.R., et al., 1969, Mollusca 6: Bivalvia, Lawrence, Geological Society of America and University of Kansas Press, Treatise on Invertebrate Paleontology, 489 p.Google Scholar
Dall, W.H., 1889, On the hinge of pelecypods and its development, with an attempt toward a better subdivision of the group: American Journal of Science, series 3, v. 38, p. 445462.Google Scholar
Damborenea, S.E., 2004, Early Jurassic Kalentera (Bivalvia) from Argentina and its palaeobiogeographical significance: Ameghiniana, v. 41, p. 185198.Google Scholar
Fang, Z.-j., and Morris, N.J., 1997, The genus Pseudosanguinolites and some modioliform bivalves (mainly Paleozoic): Palaeoworld, v. 7, p. 4974.Google Scholar
Gabb, W., 1869, Cretaceous Fossils: Palaeontology of California, v. 2, section 2, pt. 1, p. 125–205.Google Scholar
Goedert, J.L., and Kaler, K.L., 1996, A new species of Abyssochrysos (Gastropoda: Loxonematoidea) from a middle Eocene cold-seep carbonate in the Humptulips Formation, western Washington: The Veliger, v. 39, p. 6570.Google Scholar
Gray, J.E., 1854, A revision of the arrangement of the families of bivalve shells (Conchifera): Annals and Magazine of Natural History, series 2, v. 13, p. 408418.Google Scholar
Griffin, M., and Pastorino, G., 2006, Madrynomya bruneti n. gen. and sp. (Bivalvia: ?Modiomorphidae): A Mesozoic survivor in the Tertiary of Patagonia?: Journal of Paleontology, v. 80, p. 272282.CrossRefGoogle Scholar
Grobben, K., 1894, Zur Kenntnis der Morphologie, der Verwandtschaftsverhältnisse und des Systems der Mollusken: Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe, v. 103, p. 6186.Google Scholar
Hautmann, M., 2001, Die Muschelfauna der Nayband-Formation (Obertrias, Nor-Rhät) des östlichen Zentraliran: Beringeria, v. 29, p. 1181.Google Scholar
Hautmann, M., 2008, Taxonomy and phylogeny of the Triassic bivalve families Mysidiellidae Cox, 1964 and Healeyidae new family: Journal of Paleontology, v. 82, p. 555564.Google Scholar
Hikida, Y., Suzuki, S., Togo, Y., and Ijiri, A., 2003, An exceptionally well-preserved fossil seep community from the Cretaceous Yezo Group in the Nakagawa area, Hokkaido: Paleontological Research, v. 7, p. 329342.CrossRefGoogle Scholar
Hryniewicz, K., Jakubowicz, M., Belka, Z., Dopieralska, J., and Kaim, A., 2017a. New bivalves from a Middle Devonian methane seep in Morocco: The oldest record of repetitive shell morphologies among some seep bivalve molluscs: Journal of Systematic Palaeontology, v. 15, p. 1941.CrossRefGoogle Scholar
Hryniewicz, K., Amano, K., Jenkins, R.G., and Kiel, S., 2017b. Thyasirid bivalves from Cretaceous and Paleogene cold seeps: Acta Palaeontologica Polonica, v. 62, p. 705728.Google Scholar
Jakubowicz, M., Hryniewicz, K., and Belka, Z., 2017, Mass occurrence of seep-specific bivalves in the oldest-known cold seep metazoan community. Scientific Reports v. 7, p. e14292.Google Scholar
Jenkins, R.G., and Hikida, Y., 2011, Carbonate sediments microbially induced by anaerobic oxidation of methane in hydrocarbon-seeps, in Tewari, V., and Seckbach, J., eds., Stromatolites: Interaction of microbes with sediments, Volume 18: Dordrecht, Springer, p. 591605.CrossRefGoogle Scholar
Jenkins, R.G., Kaim, A., and Hikida, Y., 2007, Antiquity of the substrate choice among acmaeid limpets from the Late Cretaceous chemosynthesis-based communities: Acta Palaeontologica Polonica, v. 52, p. 369373.Google Scholar
Jenkins, R.G., Kaim, A., Little, C.T.S., Iba, Y., Tanabe, K., and Campbell, K.A., 2013, Worldwide distribution of the modiomorphid bivalve genus Caspiconcha in late Mesozoic hydrocarbon seeps: Acta Palaeontologica Polonica, v. 58, p. 357382.Google Scholar
Kaim, A., and Schneider, S., 2012, A conch with a collar: Early ontogeny of the enigmatic fossil bivalve Myoconcha : Journal of Paleontology, v. 86, no. 4, p. 652658.CrossRefGoogle Scholar
Kaim, A., Jenkins, R.G., and Warén, A., 2008, Provannid and provannid-like gastropods from the Late Cretaceous cold seeps of Hokkaido (Japan) and the fossil record of the Provannidae (Gastropoda: Abyssochrysoidea): Zoological Journal of the Linnean Society, v. 154, p. 421436.CrossRefGoogle Scholar
Kaim, A., Jenkins, R.G., and Hikida, Y., 2009, Gastropods from Late Cretaceous Omagari and Yasukawa hydrocarbon seep deposits in the Nakagawa area, Hokkaido, Japan: Acta Palaeontologica Polonica, v. 54, p. 463490.Google Scholar
Kaim, A., Skupien, P., and Jenkins, R.G., 2013, A new Lower Cretaceous hydrocarbon seep locality from the Czech Carpathians and its fauna: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 390, p. 4251.CrossRefGoogle Scholar
Kaim, A., Jenkins, R.G., Tanabe, K., and Kiel, S., 2014, Mollusks from late Mesozoic seep deposits, chiefly in California: Zootaxa, v. 3861, p. 401440.Google Scholar
Kanie, Y., and Nishida, T., 2000, New species of chemosynthetic bivalves, Vesicomya and Acharax from the Cretaceous deposits of northern Hokkaido: Science Report of the Yokosuka City Museum, v. 47, p. 79–84.Google Scholar
Kanie, Y., Yoshikawa, Y., Sakai, T., and Takahashi, T., 1993, The Cretaceous chemosynthetic cold water-dependent molluscan community discovered from Mikasa City, central Hokkaido: Science Report of the Yokosuka City Museum, v. 41, p. 31–36.Google Scholar
Kanie, Y., Nishida, T., Kuramochi, T., and Kawashita, Y., 2000, Chemosynthetic bivalve community discovered from the Cretaceous deposits in Horokanai-cho, northwestern Hokkaido: Science Report of the Yokosuka City Museum, v. 47, p. 73–78.Google Scholar
Kelly, S.R.A., Blanc, E., Price, S.P., and Whitham, A.G., 2000, Early Cretaceous giant bivalves from seep-relate limestone mounds, Wollaston Forland, Northeast Greenland, in Harper, E.M., Taylor, J.D., and Crame, J.A., eds., The Evolutionary Biology of the Bivalvia, v. Volume 177: London, Geological Society, p. 227246.Google Scholar
Kiel, S., 2013, Lucinid bivalves from ancient methane seeps: Journal of Molluscan Studies, v. 79, p. 346363.Google Scholar
Kiel, S., 2015, Did shifting seawater sulfate concentrations drive the evolution of deep-sea methane-seep ecosystems?: Proceedings of the Royal Society B: Biological Sciences, v. 282, no. 1804.Google Scholar
Kiel, S., and Amano, K., 2013, The earliest bathymodiolin mussels: Evaluation of Eocene and Oligocene taxa from deep-sea methane seep deposits in western Washington State, USA: Journal of Paleontology, v. 87, p. 589602.Google Scholar
Kiel, S., and Little, C.T.S., 2006, Cold-seep mollusks are older than the general marine mollusk fauna: Science, v. 313, p. 14291431.Google Scholar
Kiel, S., and Peckmann, J., 2008, Paleoecology and evolutionary significance of an Early Cretaceous Peregrinella-dominated hydrocarbon-seep deposit on the Crimean Peninsula: Palaios, v. 23, p. 751759.Google Scholar
Kiel, S., Amano, K., and Jenkins, R.G., 2008, Bivalves from Cretaceous cold-seep deposits on Hokkaido, Japan: Acta Palaeontologica Polonica, v. 53, p. 525537.CrossRefGoogle Scholar
Kiel, S., Campbell, K.A., and Gaillard, C., 2010, New and little known mollusks from ancient chemosynthetic environments: Zootaxa, v. 2390, p. 2648.Google Scholar
Kiel, S., Birgel, D., Campbell, K.A., Crampton, J.S., Schiøler, P., and Peckmann, J., 2013, Cretaceous methane-seep deposits from New Zealand and their fauna: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 390, p. 1734.Google Scholar
Kiel, S., Glodny, J., Birgel, D., Bulot, L.G., Campbell, K.A., Gaillard, C., Graziano, R., Kaim, A., Lazăr, I., and Sandy, M.R., 2014, The paleoecology, habitats, and stratigraphic range of the enigmatic Cretaceous brachiopod Peregrinella : PLoS One, v. 9, p. e109260.Google Scholar
Kiel, S., Krystyn, L., Demirtaş, F., Koşun, E., and Peckmann, J., 2017, Late Triassic mollusk-dominated hydrocarbon-seep deposits from Turkey: Geology, v. 45, no. 8, p. 751754.Google Scholar
Leanza, A., 1940, Myoconcha neuquena n. sp. del Lias de Piedra Pintada en El Neuquén: Paleontologia, v. 22, p. 123131.Google Scholar
Linnaeus, C., 1758, Systema naturae ed. 10: Holmiae, Salvii, 824 p.Google Scholar
Little, C.T.S., and Vrijenhoek, R.C., 2003, Are hydrothermal vent animals living fossils?: Trends in Ecology and Evolution, v. 18, p. 582588.Google Scholar
Little, C.T.S., Maslennikov, V.V., Morris, N.J., and Gubanov, A.P., 1999, Two Palaeozoic hydrothermal vent communities from the southern Ural mountains, Russia: Palaeontology, v. 42, p. 10431078.Google Scholar
Little, C.T.S., Birgel, D., Boyce, A.J., Crame, J.A., Francis, J.E., Kiel, S., Peckmann, J., Pirrie, D., Rollinson, G.K., and Witts, J.D., 2015, Late Cretaceous (Maastrichtian) shallow water hydrocarbon seeps from Snow Hill and Seymour Islands, James Ross Basin, Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 418, p. 213228.Google Scholar
Marwick, J., 1953, Divisions and faunas of the Hokonui System (Triassic and Jurassic): Paleontological Bulletin, v. 21, p. 1141.Google Scholar
Nevesskaja, L., 2009, Principles of systematics and the system of bivalves: Paleontological Journal, v. 43, p. 111.CrossRefGoogle Scholar
Newell, N.D., 1957, Notes on certain primitive heterodont pelecypods: American Museum Novitates, v. 1857, p. 114.Google Scholar
Newell, N.D., 1969, Classification of the Bivalvia, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, v. Volume 1: Lawrence, Geological Society of America and University of Kansas Press, p. N205N224.Google Scholar
Ogihara, S., 2005, The evolution of chemosynthetic biological community at the site of cold-seep carbonate precipitation: Fossils, v. 78, p. 4046. [in Japanese with English abstract].Google Scholar
Olsson, A.A., 1931, Contributions to the Tertiary paleontology of northern Peru. Part 4. The Peruvian Oligocene: Bulletins of American Paleontology, v. 17, p. 97264.Google Scholar
Peckmann, J., Kiel, S., Sandy, M.R., Taylor, D.G., and Goedert, J.L., 2011, Mass occurrences of the brachiopod Halorella in Late Triassic methane-seep deposits, eastern Oregon: The Journal of Geology, v. 119, p. 207220.CrossRefGoogle Scholar
Sandy, M.R., 2010, Brachiopods from ancient hydrocarbon seeps and hydrothermal vents, in Kiel, S., ed., The Vent and Seep Biota, v. Volume 33: Dordrecht, Springer, p. 279314.Google Scholar
Sowerby, J., 1823–1825, The Mineral Conchology of Great Britain: London, Richard Taylor, Shoe-Lane, 168 p.Google Scholar
Stanton, T., 1895, Contributions to the Cretaceous paleontology of the Pacific coast: The fauna of the Knoxville beds: Bulletin of the United States Geological Survey, v. 133, p. 11132.Google Scholar
Takahashi, A., Hirano, H., and Sato, T., 2003, Stratigraphy and fossil assemblage of the Upper Cretaceous in the Teshionakagawa area, Hokkaido, northern Japan: Journal of the Geological Society of Japan, v. 109, p. 7795.Google Scholar
Takahashi, A., Hikida, Y., Jenkins, R.G., and Tanabe, K., 2007, Stratigraphy and megafauna of the Upper Cretaceous Yezo Supergroup in the Teshionakagawa area, northern Hokkaido, Japan: Bulletin of the Mikasa City Museum, Natural Science, v. 11, p. 2559.Google Scholar
Waller, T.R., 1990, The evolution of ligament systems in the Bivalvia, in Morton, B., ed., The Bivalvia - Proceedings of a Memorial Symposium in Honour of Sir Charles Maurice Yonge, Edinburgh, 1986: Hong Kong, Hong Kong University Press, p. 49–71.Google Scholar