Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T05:16:40.193Z Has data issue: false hasContentIssue false

Halkieriids in Middle Cambrian phosphatic limestones from Australia

Published online by Cambridge University Press:  20 May 2016

Susannah M. Porter*
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, Massachusetts 02138

Abstract

Halkieriids are part of a distinctive Early Cambrian fauna, the “Tommotian fauna” sensu Sepkoski (1992), that is preserved mostly as phosphatic and secondarily phosphatized skeletal elements. The distinctiveness of the Tommotian fauna is ascribed, in part, to its preferential elimination during the end-Early Cambrian mass extinction event (the “Botomian extinction”). Newly discovered halkieriids in phosphatic limestones of the Middle Cambrian (Ptychagnostus gibbus Zone) Monastery Creek Formation, Georgina Basin, Australia, now indicate that this group not only survived the end-Early Cambrian extinction, but was at least locally abundant thereafter. Most of the Georgina halkieriid sclerites can be accommodated within a single species, Australohalkieria superstes new genus and species, described and partly reconstructed here. Remaining sclerites probably represent two additional but rare halkieriid species. Additional newly discovered sclerites may have affinities with the sachitids, another problematic “Tommotian” taxon related to the halkieriids. Rare wiwaxiid sclerites extend the taphonomic and geographic distribution of this clade. The Monastery Creek Formation provides a valuable window on Middle Cambrian life, both because it provides information that is distinct from but complementary to other, similarly aged windows (e.g., the Burgess Shale) and because it represents a taphonomic window similar to those that preserve Early Cambrian small shelly problematica. A decline during the Cambrian in conditions necessary for the early diagenetic phosphatization of shallow-shelf and platform limestones may have effectively closed this taphonomic window, potentially biasing apparent patterns of diversity change through the period.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P. A. 1988. Phosphatized soft-bodied squids from the Jurassic Oxford Clay. Lethaia, 21:403410.Google Scholar
Baxter, J. M., Jones, A. M., and Sturrock, M. G. 1987. The ultrastructure of aesthetes in Tonicella-Marmorea (Polyplacophora, Ischnochitonina) and a new functional hypothesis. Journal of Zoology, 211:589604.Google Scholar
Baxter, J. M., Sturrock, M. G., and Jones, A. M. 1990. The structure of the intrapigmented aesthetes and the propoperiostracum layer in Callochiton-Achatinus (Mollusca, Polyplacophora). Journal of Zoology. 220:447468.CrossRefGoogle Scholar
Bengtson, S. 1985a. Taxonomy of disarticulated fossils. Journal of Paleontology, 59:13501358.Google Scholar
Bengtson, S. 1985b. Redescription of the Lower Cambrian Halkieria obliqua Poulsen. Geologiska Föreningens i Stockhom Förhandlingar, 107:101106.Google Scholar
Bengtson, S. 1992. The cap-shaped Cambrian fossil Maikhanella and the relationship between coeloscleritophorans and molluscs. Lethaia. 25:401420.CrossRefGoogle Scholar
Bengtson, S. 1999. Hierarchical processes in coeloscleritophoran skeletogenesis. Geological Society of America Abstracts with Programs. 31:A363.Google Scholar
Bengtson, S., and Morris, S. Conway 1984. A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia. Lethaia, 17:307329.Google Scholar
Bengtson, S., and Hou, X. 2001. The integument of Cambrian chancelloriids. Acta Palaeontologica Polonica, 46:122.Google Scholar
Bengtson, S., and Missarzhevsky, V. V. 1981. Coeloscleritophora—a major group of enigmatic Cambrian metazoans, p. 1921. In Taylor, M. E. (ed.), Short Papers for the Second International Symposium on the Cambrian System 1981. United States Geological Survey Open-File Report, 81–743 p.Google Scholar
Bengtson, S., Morris, S. Conway, Cooper, B. J., Jell, P. A., and Runnegar, B. N. 1990. Early Cambrian fossils from South Australia. Memoirs of the Association of Australian Palaeontologists, 9:1364.Google Scholar
Bottjer, D. J. 1981. Periostracum of the gastropod Fusitriton oregonensis: natural inhibitor of boring and encrusting organisms. Bulletin of Marine Sciences, 31:916921.Google Scholar
Brasier, M. D. 1990. Phosphogenic events and skeletal preservation across the Precambrian-Cambrian boundary interval, p. 289303. In Notholt, A. G. and Jarvis, I. (eds.), Phosphorite Research and Development, Geological Society Special Publication (London), 52 p.Google Scholar
Brasier, M. D., and Hewitt, R. A. 1979. Environmental setting of fossiliferous rocks from the uppermost Proterozoic—Lower Cambrian of central England. Palaeogeography, Palaeoclimatology, Palaeoecology, 27:3557.Google Scholar
Butterfield, N. J. 1990. A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa Walcott. Paleobiology, 16:287303.Google Scholar
Butterfield, N. J. 1994. Burgess Shale-type fossils from a Lower Cambrian shallow-shelf sequence in northwestern Canada. Nature, 369:477479.Google Scholar
Butterfield, N. J., and Nicholas, C. J. 1996. Burgess Shale-type preservation of both mineralizing and ‘shelly’ Cambrian organisms from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology, 70:893899.Google Scholar
Cherns, L., and Wright, V. P. 2000. Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology, 28:791794.Google Scholar
Cohen, B. L., Holmer, L. E., and Lüter, C. 2003. The brachiopod fold: a neglected body plan hypothesis. Palaeontology, 46:5965.Google Scholar
Morris, S. Conway 1985. The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada. Philosophical Transactions of the Royal Society of London, series B, 307:507582.Google Scholar
Morris, S. Conway 1995. Enigmatic shells, possibly halkieriid, from the Middle Cambrian Burgess Shale, British Columbia. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 195:319–31.Google Scholar
Morris, S. Conway, and Chapman, A. J. 1997. Lower Cambrian halkieriids and other coeloscleritophorans from Aksu-Wushi, Xinjiang, China. Journal of Paleontology, 71:622.Google Scholar
Morris, S. Conway, and Peel, J. S. 1990. Articulated halkieriids from the Lower Cambrian of North Greenland. Nature, 345:802805.Google Scholar
Morris, S. Conway, and Peel, J. S. 1995. Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Philosophical Transactions of the Royal Socitey of London, series B, 347:305358.Google Scholar
Morris, S. Conway, McIlroy, D., and Rushton, A. W. A. 1998. Lower Cambrian halkieriids from Oxfordshire, UK. Geological Magazine, 135:501508.Google Scholar
Cook, P. J., and McElhinny, M. W. 1979. A re-evaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Economic Geology, 74:315330.Google Scholar
Debrenne, F., Rozanov, A. Y., and Webers, G. F. 1984. Upper Cambrian Archaeocyatha from Antarctica. Geological Magazine, 121:291299.Google Scholar
de Keyser, F., and Cook, P. J. 1972. Geology of the Middle Cambrian phosphorites and associated sediments of northwestern Queensland. Bureau of Mineral Resources Geology and Geophysics Bulletin (Australia), 138, 79 p.Google Scholar
Dzik, J. 1994. Evolution of ‘small shelly fossils’ assemblages of the Early Paleozoic. Acta Palaeontologica Polonica, 39:247313.Google Scholar
Fischer, F. P., Maile, W., and Renner, M. 1980. Die Mantelpapillen und Stachelm von Acanthochiton fascicularis L. (Mollusca, Polyplacophora). Zoomorphologie, 94:121131.Google Scholar
Fleming, P. J. G. 1973. Bradoriids from the Xystridura zone of the Georgina Basin, Queensland. Geological Survey of Queensland Publication 356, Palaeontological Papers, 31:19.Google Scholar
Geyer, G., and Shergold, J. 2000. The quest for internationally recognized divisions of Cambrian time. Episodes, 23:188196.Google Scholar
Geyer, G., Peng, S., and Shergold, J. H. 2000. Correlation chart for major Cambrian areas. Episodes, 23:188196.Google Scholar
Gravestock, D. I., and Shergold, J. H. 2001. Australian Early and Middle Cambrian sequence biostratigraphy with implications for species diversity and correlation, p. 107136. In Zhuravlev, A. Y. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Haas, W., and Kriesten, K. 1975. Studien über das Perinotum-Epithel und die Bildung der Kalkstacheln von Lepidochitona cinerea (L.) (Placophora). Biomineralisation—Forschungsberichte, 9:1127.Google Scholar
Henderson, R. A., and Mackinnon, D. I. 1981. New Cambrian inarticulate Brachiopoda from Australasia and the age of the Tasman Formation. Alcheringa, 5:289309.Google Scholar
Hinz-Schallreuter, I. 1993. Ostracodes from the Middle Cambrian of Australia. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 188:305326.Google Scholar
Holmer, L. E., Skovsted, C. B., and Williams, A. 2002. A stem group brachiopod from the Lower Cambrian: support for a Micrina (halkieriid) ancestry. Palaeontology, 45:875882.Google Scholar
James, N. P., and Klappa, C. F. 1983. Petrogenesis of Early Cambrian reef limestones, Labrador, Canada. Journal of Sedimentary Petrology, 53:10511096.Google Scholar
Jell, P. A. 1981. Thambetolepis delicata gen. et sp. nov., an enigmatic fossil from the Early Cambrian of South Australia. Alcheringa, 5:8593.Google Scholar
Jones, P. J., and Mackenzie, K. G. 1980. Queensland Middle Cambrian Bradoriida (Crustacea): new taxa, palaeobiogeography and biological affinities. Alcheringa, 4:203225.Google Scholar
Khomentovskii, V. V., and Karlova, G. A. 1994. Ecological peculiarities of the Vendian-Cambrian small shelly fauna in the Siberian Platform. Stratigraphy and Geological Correlation, 2:206215.Google Scholar
Kouchinsky, A. V. 2000a. Shell microstructures in Early Cambrian molluscs. Acta Palaeontologica Polonica, 45:119150.Google Scholar
Kouchinsky, A. V. 2000b. Skeletal microstructures of hyoliths from the Early Cambrian of Siberia. Alcheringa, 24:6581.Google Scholar
Kruse, P. D. 1998. Cambrian palaeontology of the eastern Wiso and western Georgina basins. Northern Territory Geological Survey Report, 9, 68 p.Google Scholar
Landing, E. 1992. Lower Cambrian of southeastern Newfoundland: epeirogeny and Lazarus faunas, lithofacies-biofacies linkages, and the myth of a global chronostratigraphy, p. 283309. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York.CrossRefGoogle Scholar
Lindsay, J. F., Korsch, J., and Wilford, R. 1987. Timing the breakup of a Proterozoic supercontinent: evidence from Australian intracratonic basins. Geology, 15:10611064.Google Scholar
Martill, D. M. 1988. Preservation of fish in the Cretaceous Santana Formation of Brazil. Palaeontology, 31:118.Google Scholar
Matthews, S. C., and Missarzhevsky, V. V. 1975. Small shelly fossils of late Precambrian and early Cambrian age: a review of recent work. Journal of the Geological Society (London), 131:289304.Google Scholar
Mehl, D. 1996. Organization and microstructure of the chancelloriid skeleton: implications for the biomineralization of the Chancelloriidae. Bulletin de l'Institut océanographique (Monaco), 14:377385.Google Scholar
Mehl, D. 1998. Porifera and Chancelloriidae from the Middle Cambrian of the Georgina Basin, Australia. Palaeontology, 41:11531182.Google Scholar
Mount, J. F., and Signor, P. W. 1992. Faunas and facies—fact and artifact: paleoenvironmental controls on the distribution of Early Cambrian faunas, p. 2751. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa, 10. Plenum Press, New York.Google Scholar
Müller, K. J. 1985. Exceptional preservation in calcareous nodules. Philosophical Transactions of the Royal Society of London, series B, 311:6773.Google Scholar
Müller, K. J., and Hinz, I. 1992. Cambrogeorginidae fam. nov., soft-integumented Problematica from the Middle Cambrian of Australia. Alcheringa, 16:333353.Google Scholar
Müller, K. J., and Hinz-Schallreuter, I. 1993. Palaeoscolecid worms from the Middle Cambrian of Australia. Palaeontology, 36:549592.Google Scholar
Öpik, A. A. 1979. Middle Cambrian agnostids: systematics and biostratigraphy. Bureau of Mineral Resources Bulletin (Geology and Geophysics, Australia), 172, 188 p.Google Scholar
Öpik, A. A., Banks, M. R., Casey, J. N., Daily, B., Gilbert-Tomlinson, J., Noakes, L. C., Singleton, L. P., Thomas, D. E., and Traves, D. M. 1957. The Cambrian geology of Australia. Bureau of Mineral Resources Bulletin (Geology and Geophysics, Australia), 49, 284 p.Google Scholar
Palmer, A. R. 1982. Biomere boundaries: a possible test for extraterrestrial perturbation of the biosphere. Geological Society of America Special Paper, 190:469475.Google Scholar
Poulsen, C. 1967. Fossils from the Lower Cambrian of Bornholm. Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser, 32, 48 p.Google Scholar
Qian, Y., and Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 24:1156.Google Scholar
Rogers, J. K., and Crase, N. J. 1980. The Phosphate Hill rock phosphate deposit, northwestern Queensland, Australia—an outline of geological development, p. 307328. In Sheldon, R. P. and Burnett, W. C. (eds.), Fertilizer Mineral Potential in Asia and the Pacific. Proceedings of the Fertilizer Raw Materials Resources Workshop, August 20–24, 1979. East-West Resource Systems Institute, Honolulu, Hawaii.Google Scholar
Roy, K., and Fåhræus, L. E. 1989. Tremadocian (Early Ordovician) nauplius-like larvae from the Middle Arm Point Formation, Bay of Islands, western Newfoundland. Canadian Journal of Earth Sciences, 26:18021806.Google Scholar
Runnegar, B. 1985. Shell microstructures of Cambrian molluscs replicated by phosphate. Alcheringa, 9:245257.Google Scholar
Runnegar, B. 2000. Body building in Halkieria and comparisons with chitons and other molluscs. Geological Society of America Abstracts with Programs, 32:A72.Google Scholar
Runnegar, B., and Jell, P. A. 1976. Australian Middle Cambrian molluscs and their bearing on early molluscan evolution. Alcheringa, 1:109138.Google Scholar
Russell, R. T., and Trueman, N. A. 1971. The geology of the Duchess phosphate deposits, northwestern Queensland, Australia. Economic Geology, 66:11861214.Google Scholar
Sandstrom, M. W. 1986. Proterozoic and Cambrian phosphorites—specialist studies: geochemistry of organic matter in Middle Cambrian phosphorites from the Georgina Basin, northeastern Australia, p. 268279. In Cook, P. J. and Shergold, J. H. (eds.), Phosphate Deposits of the World, Volume 1, Proterozoic and Cambrian Phosphorites. Cambridge University Press, Cambridge.Google Scholar
Sepkoski, J. J. Jr. 1992. Proterozoic-Early Cambrian diversification of metazoans and metaphytes, p. 553561. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge University Press, Cambridge.Google Scholar
Shergold, J. H., and Southgate, P. N. 1986. Middle Cambrian phosphatic and calcareous lithofacies along the eastern margin of the Georgina Basin, Western Queensland. Geological Society of Australia, Sydney. Australian Sedimentologists Group Field Guide, series 2. Geological Society of Australia, Sydney, 89 p.Google Scholar
Signor, P. W. 1992. Taxonomic diversity and faunal turnover in the Early Cambrian: did the most severe mass extinction of the Phanerozoic occur in the Botomian Stage? 5th North American Paleontological Convention, Abstracts with Programs, 272.Google Scholar
Soudry, D., and Southgate, P. N. 1989. Ultrastructure of a Middle Cambrian primary nonpelletal phosphorite and its early transformation into phosphate vadoid: Georgina Basin, Australia. Journal of Sedimentary Petrology, 59:5364.Google Scholar
Southgate, P. N., and Shergold, J. H. 1991. Application of sequence stratigraphic concepts to Middle Cambrian phosphogenesis, Georgina Basin, Australia. Journal of Australian Geology and Geophysics, 12:119144.Google Scholar
Southgate, P. N., Laurie, J. R., Shergold, J. H., and Armstrong, K. J. 1988. Stratigraphic drilling in the Georgina Basin Burke River Structural Belt, August 1986–January 1987. Bureau of Mineral Resources, Geology and Geophysics Record, 1988/1, 44 p.Google Scholar
Speyer, S. E., and Chatterton, B. D. E. 1989. Trilobite larvae and larval ecology. Historical Biology, 3:2760.Google Scholar
Taylor, J. D., and Kennedy, W. J. 1969. The influence of the periostracum on the shell structure of bivalve molluscs. Calcified Tissue Research, 3:274283.Google Scholar
Tevesz, M. J. S., and Carter, J. G. 1980. Environmental relationships of shell form and structure of unionacean bivalves, p. 295322. In Rhoads, D. C. and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change, 1. Plenum Press, New York.Google Scholar
Walossek, D., Hinz-Schallreuter, I., Shergold, J. H., and Müller, K. J. 1993. Three-dimensional preservation of arthropod integument from the Middle Cambrian of Australia. Lethaia, 26:715.CrossRefGoogle Scholar
Wilby, P. R. 1993. The role of organic matrices in post-mortem phosphatization of soft-tissues. Kaupia, Darmstädter Beiträger zur Naturgeschichte, 2:99113.Google Scholar
Wilby, P. R., and Briggs, D. E. G. 1997. Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Géobios (Mémoire Special), 20:493502.Google Scholar
Williams, A., and Holmer, L. E. 2002. Shell structure and inferred growth, functions and affinities of the sclerites of the problematic Micrina. Palaeontology, 45:845873.Google Scholar
Wood, R. A., Evans, K. R., and Zhuravlev, A. Y. 1992. A new post-early Cambrian archaeocyath from Antarctica. Geological Magazine, 129:491495.Google Scholar
Xiao, S., and Knoll, A. H. 1999. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China. Lethaia, 32:219240.Google Scholar
Xiao, S., Zhang, Y., and Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391:553558.Google Scholar
Zhao, Y., and Bengtson, S. 1999. Embryonic and post-embryonic development of the early cnidarian Olivooides. Lethaia, 32:181195.Google Scholar
Zhao, Y., Qian, Y., and Li, X.-S. 1994. Wiwaxia from Early-Middle Cambrian Kaili Formation in Taijiang, Quizhou. Acta Palaeontologica Sinica, 33:359–356.Google Scholar
Zhuravlev, A. Y., and Wood, R. A. 1996. Anoxia as the cause of the mid-Early Cambrian extinction event. Geology, 24:311314.Google Scholar