Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T17:03:36.008Z Has data issue: false hasContentIssue false

Ichnofacies and bathymetry: a passive relationship

Published online by Cambridge University Press:  20 May 2016

Robert W. Frey
Affiliation:
1Department of Geology, University of Georgia, Athens 30602
S. George Pemberton
Affiliation:
2Department of Geology, University of Alberta, Edmonton, T6G 2E3, Canada
Thomas D. A. Saunders
Affiliation:
2Department of Geology, University of Alberta, Edmonton, T6G 2E3, Canada

Extract

Ichnofacies stand today as one of the more elegant but widely misunderstood concepts in ichnology, especially where paleobathymetry is concerned. Marine ichnofacies are not intended to be paleobathometers, as some workers continue to imply (e.g., Lockley et al., 1987; Ekdale, 1988); rather, they are archetypical facies models based upon recurring ichnocoenoses (Frey and Pemberton, 1984, 1985, 1987). If a particular ichnocoenose tends to occur repeatedly within a given bathymetric setting, so much the better; but water depth per se is rarely, if ever, a governing factor. Ichnocoenoses and ichnofacies, therefore, are best viewed in the context of actual depositional conditions or environmental gradients, wherever they occur (Figure 1).

Type
Paleontological Notes
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceñolaza, F. G., and Durand, F. 1973. Trazas fosiles del basamento cristalino del noroeste Argentino. Boletin de la Asociacion Geologica de Cordoba, 2:4555.Google Scholar
Aigner, T., and Reineck, H.-E. 1982. Proximality trends in modern storm sands from the Helgoland Bight (North Sea) and their implications for basin analysis. Senckenbergiana Maritima, 14:183215.Google Scholar
Bjerstedt, T. W. 1988. Multivariate analyses of trace fossil distribution from an Early Mississippian oxygen-deficient basin, central Appalachians. Palaios, 3:5368.Google Scholar
Bourgeois, J. 1984. Utilization of physical and biogenic sedimentary structures to interpret the nature of deposition in shallow seas, p. 425. In Park, Y. A., Pilkey, O. H., and Kim, S. W. (eds.), Marine Geology and Physical Processes of the Yellow Sea. Proceedings of Korea–U.S. Seminar and Workshop, Korea Institute of Energy Resources, Seoul, Korea.Google Scholar
Bromley, R. G., Pemberton, S. G., and Rahmani, R. A. 1984. A Cretaceous woodground: the Teredolites ichnofacies. Journal of Paleontology, 58:488498.Google Scholar
Byers, C. W. 1982. Geological significance of marine biogenic sedimentary structures, p. 221256. In McCall, P. L. and Tevesz, M. J. S. (eds.), Animal-Sediment Relations, the Biogenic Alteration of Sediments. Plenum Press, New York.CrossRefGoogle Scholar
Clifton, H. E. 1988. Sedimentologic approaches to paleobathymetry, with applications to the Merced Formation of central California. Palaios, 3:507522.Google Scholar
Colella, A., and D'Alessandro, A. 1988. Sand waves, Echinocardium traces and their bathyal depositional setting (Monte Torre Palaeostrait, Plio-Pleistocene, southern Italy). Sedimentology, 35:219237.Google Scholar
Corbo, S. 1979. Vertical distribution of trace fossils in a turbidite sequence, Upper Devonian, New York State. Palaeogeography, Palaeoclimatology, Palaeoecology, 28:81101.CrossRefGoogle Scholar
Crimes, T. P. 1970. The significance of trace fossils in sedimentology, stratigraphy and palaeoecology with examples from lower Palaeozoic strata, p. 101126. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Geological Journal, Special Issue 3.Google Scholar
Crimes, T. P. 1973. From limestones to distal turbidites: a facies and trace fossil analysis in the Zumaya flysch (Paleocene-Eocene), north Spain. Sedimentology, 20:105131.CrossRefGoogle Scholar
Crimes, T. P. 1977. Trace fossils of an Eocene deep-sea sand fan, northern Spain, p. 7190. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal, Special Issue 9.Google Scholar
Crimes, T. P., Goldring, R., Homewood, P., van Stuijvenberg, J., and Winkler, W. 1981. Trace fossil assemblages of deep-sea fan deposits, Gurnigel and Schlieren flysch (Cretaceous-Eocene), Switzerland. Eclogae Geologicae Helvetiae, 74:953995.Google Scholar
Dott, R. H. Jr., and Bourgeois, J. 1982. Hummocky stratification: significance of its variable bedding sequences. Geological Society of America Bulletin, 93:663680.Google Scholar
Easthouse, K. A., and Driese, S. G. 1988. Paleobathymetry of a Silurian shelf system: application of proximality trends and trace-fossil distributions. Palaios, 3:473486.Google Scholar
Ekdale, A. A. 1988. Pitfalls of paleobathymetric interpretations based on trace fossil assemblages. Palaios, 3:464472.Google Scholar
Ekdale, A. A., Bromley, R. G., and Pemberton, S. G. 1984. Ichnology: The Use of Trace Fossils in Sedimentology and Stratigraphy. Society of Economic Paleontologists and Mineralogists, Short Course Number 15, 317 p.Google Scholar
Frey, R. W. 1971. Ichnology—the study of fossil and recent lebensspuren, p. 91125. In Perkins, B. F. (ed.), Trace Fossils, a Field Guide to Selected Localities in Pennsylvanian, Permian, Cretaceous, and Tertiary Rocks of Texas, and Related Papers. Louisiana State University School of Geoscience, Miscellaneous Publication 71-1.Google Scholar
Frey, R. W., and Howard, J. D. 1982. Trace fossils from the Upper Cretaceous of the Western Interior: potential criteria for facies models. The Mountain Geologist, 19:110.Google Scholar
Frey, R. W., and Howard, J. D., and Hong, J.-S. 1987. Prevalent lebensspuren on a modern macrotidal flat, Inchon, Korea: ethological and environmental significance. Palaios, 2:571593.Google Scholar
Frey, R. W., and Pemberton, S. G. 1984. Trace fossil facies models, p. 189207. In Walker, R. G. (ed.), Facies Models (2nd edition). Geoscience Canada, Reprint Series 1.Google Scholar
Frey, R. W., and Pemberton, S. G. 1985. Biogenic structures in outcrops and cores. I. Approaches to ichnology. Bulletin of Canadian Petroleum Geology, 33:72115.Google Scholar
Frey, R. W., and Pemberton, S. G. 1987. The Psilonichnus ichnocoenose, and its relationship to adjacent marine and nonmarine ichnocoenoses along the Georgia coast. Bulletin of Canadian Petroleum Geology, 35:333357.Google Scholar
Frey, R. W., and Pemberton, S. G., and Fagerstrom, J. A. 1984. Morphological, ethological, and environmental significance of the ichnogenera Scoyenia and Ancorichnus . Journal of Paleontology, 58:511528.Google Scholar
Frey, R. W., and Seilacher, A. 1980. Uniformity in marine invertebrate ichnology. Lethaia, 13:183207.Google Scholar
Frey, R. W., and Wheatcroft, R. A. 1989. Organism-substrate relations and their impact on sedimentary petrology. Journal of Geological Education, 37:261279.Google Scholar
Fürsich, F. T. 1975. Trace fossils as environmental indicators in the Corallian of England and Normandy. Lethaia, 8:151172.Google Scholar
Fürsich, F. T., and Mayr, H. 1981. Non-marine Rhizocorallium (trace fossil) from the Upper Freshwater Molassee (Upper Miocene) of southern Germany. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1981:321333.CrossRefGoogle Scholar
Häntzschel, W. 1964. Spurenfossilien und Problematica im Campan von Beckum (Westf.). Fortschritte in der Geologie von Rheinland und Westfalens, 7:295308.Google Scholar
Hayward, B. W. 1976. Lower Miocene bathyal and submarine canyon ichnocoenoses from Northland, New Zealand. Lethaia, 9:149162.Google Scholar
Heinberg, C., and Birkelund, T. 1984. Trace-fossil assemblages and basin evolution of the Vardekl⊘ft Formation (Middle Jurassic), central East Greenland. Journal of Paleontology, 58:362397.Google Scholar
Henbest, L. G. 1960. Fossil spoor and their environmental significance in Morrow and Atoka Series, Pennsylvanian, Washington County, Arkansas. U.S. Geological Survey, Professional Paper 400-B:B383B385.Google Scholar
Howard, J. D., and Frey, R. W. 1984. Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east-central Utah. Canadian Journal of Earth Sciences, 21:200219.Google Scholar
Howard, J. D., and Reineck, H.-E. 1981. Depositional facies of high-energy beach-to-offshore sequence: comparison with low-energy sequence. Bulletin of the American Association of Petroleum Geologists, 65:807830.Google Scholar
Ineson, J. R. 1987. Trace fossils from a submarine fan-slope apron complex in the Cretaceous of James Ross Island, Antarctica. British Antarctic Survey Bulletin, 74:116.Google Scholar
Jones, B., and Pemberton, S. G. 1989. Sedimentology and ichnology of a Pleistocene unconformity-bounded, shallowing upward carbonate sequence: the Ironshore Formation, Salt Creek, Grand Cayman. Palaios, 4:343355.Google Scholar
Leithold, E. L. 1989. Depositional processes on an ancient and modern muddy shelf, northern California. Sedimentology, 36:179202.Google Scholar
Lockley, M. G., Rindsberg, A. K., and Zeiler, R. M. 1987. The paleoenvironmental significance of the nearshore Curvolithus ichnofacies. Palaios, 2:255262.Google Scholar
Moslow, T. F., and Pemberton, S. G. 1988. An integrated approach to the sedimentological analysis of some Lower Cretaceous shoreface and delta front sandstone sequences, p. 373386. In James, D. P. and Leckie, D. A. (eds.), Sequences, Stratigraphy, Sedimentology: Surface and Subsurface. Canadian Society of Petroleum Geologists, Memoir 15.Google Scholar
Nittrouer, C. A., DeMaster, D. J., and McKee, B. A. 1984. Finescale stratigraphy in proximal and distal deposits of sediment dispersal systems in the East China Sea. Marine Geology, 61:1324.Google Scholar
Osgood, R. G. Jr. 1970. Trace fossils of the Cincinnati area. Palaeontographica Americana, 6(41):281444.Google Scholar
Osgood, R. G., and Szmuc, E. J. 1972. The trace fossil Zoophycos as an indicator of water depth. Bulletins of American Paleontology, 62(271):522.Google Scholar
Pemberton, S. G., and Frey, R. W. 1984. Ichnology of storm-influenced shallow marine sequence: Cardium Formation (Upper Cretaceous) at Seebe, Alberta, p. 281304. In Stott, D. F. and Glass, D. J. (eds.), The Mesozoic of Middle North America. Canadian Society of Petroleum Geologists, Memoir 9.Google Scholar
Pemberton, S. G., and Frey, R. W. 1985. The Glossifungites ichnofacies: modern examples from the Georgia coast, U.S.A., p. 237259. In Curran, H. A. (ed.), Biogenic Structures: Their Use in Interpreting Depositional Environments. Society of Economic Paleontologists and Mineralogists, Special Publication 35.Google Scholar
Pickerill, R. K., Fillion, D., and Harland, T. L. 1984. Middle Ordovician trace fossils in carbonates of the Trenton Group between Montreal and Quebec City, St. Lawrence lowland, eastern Canada. Journal of Paleontology, 58:416439.Google Scholar
Seilacher, A. 1954. Die geologische Bedeutung fossiler Lebensspuren. Deutsche Geologische Gesellschaft, Zeitschrift, 105:214227.CrossRefGoogle Scholar
Seilacher, A. 1955. Spuren und Fazies im Unterkambrium, p. 373399. In Schindewolf, O. H. and Seilacher, A., Beiträge zur Kenntnis des Kambriums in der Salt Range (Pakistan). Akademie der Wissenschaften und der Literatur zu Mainz, mathematisch-naturwissenschaftliche Klasse, Abhandlungen, Jahrgang 1955, No. 10.Google Scholar
Seilacher, A. 1958. Zur ökologischen Charakteristik von Flysch und Molasse. Eclogae Geologicae Helvetiae, 51:10621078.Google Scholar
Seilacher, A. 1963. Lebensspuren und Salinitätsfazies. Fortschritte in der Geologie von Rheinland und Westfalens, Krefeld, 10:8194.Google Scholar
Seilacher, A. 1964. Biogenic sedimentary structures, p. 296316. In Imbrie, J. and Newell, N. (eds.), Approaches to Paleoecology. John Wiley and Sons, New York.Google Scholar
Seilacher, A. 1967. Bathymetry of trace fossils. Marine Geology, 5:413428.Google Scholar
Seilacher, A. 1978. Use of trace fossil assemblages for recognizing depositional environments, p. 185201. In Basan, P. B. (ed.), Trace Fossil Concepts. Society of Economic Paleontologists and Mineralogists, Short Course No. 5.Google Scholar
Seilacher, A., and Meischner, D. 1964. Fazies-Analyse im Paläozoikum des Oslo-Gebietes. Geologische Rundschau, 54:596619.Google Scholar
Vossler, S. M., and Pemberton, S. G. 1988. Skolithos in the Upper Cretaceous Cardium Formation: an ichnofossil example of opportunistic ecology. Lethaia, 21:351362.Google Scholar
Wetzel, A. 1981. Ökologische und stratigraphische Bedeutung biogener Gefüge in quartären Sedimenten am NW-afrikanischen Kontinentalrand. “Meteor” Forschungs-Ergebnisse, C, 34:147.Google Scholar
Wetzel, A. 1984. Bioturbation in deep-sea fine-grained sediments: influence of sediment texture, turbidite frequency and rates of environmental change, p. 595608. In Stow, D. A. V. and Piper, D. J. W. (eds.), Fine-Grained Sediments: Deep Water Processes and Facies. Blackwell Scientific Publications, Oxford.Google Scholar
Wightman, D. M., Pemberton, S. G., and Singh, C. 1987. Depositional modelling of the Upper Mannville (Lower Cretaceous), east central Alberta: implications for the recognition of brackish water deposits, p. 189220. In Tillman, R. W. and Weber, K. J., Reservoir Sedimentology. Society of Economic Paleontologists and Mineralogists, Special Publication No. 40.CrossRefGoogle Scholar