Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T03:57:08.273Z Has data issue: false hasContentIssue false

The ichnogenus Tubotomaculum: an enigmatic pellet-filled structure from Upper Cretaceous to Miocene deep-marine deposits of southern Spain

Published online by Cambridge University Press:  14 July 2015

Jose Carlos García-Ramos
Affiliation:
Museo del Jurásico de Asturias (MUJA), 33328 Colunga, Asturias, Spain, ;
María Gabriela Mángano
Affiliation:
Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada, ;
Laura Piñuela
Affiliation:
Museo del Jurásico de Asturias (MUJA), 33328 Colunga, Asturias, Spain, ;
Luis A. Buatois
Affiliation:
Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada, ;
Francisco J. Rodríguez-Tovar
Affiliation:
and Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18002 Granada, Spain,

Abstract

The trace-fossil name Tubotomaculum has been extensively used to refer to spindle-shaped pellet-filled tubes present in Upper Cretaceous to Miocene deep-marine deposits of the western Mediterranean region. However, it has never been formally diagnosed, and accordingly it was regarded as a nomen nudum. In this paper, we formally introduce the ichnogenus Tubotomaculum, including the new ichnospecies Tubotomaculum mediterranensis. Bioglyphs, represented by scratch traces that may be present on the basal and lateral surfaces of the structure, suggesting production by crustaceans. The functional meaning of these structures challenges the simple model of a mining strategy. Instead, the storing of pellets to use them as a bacteria-enriched resource during times when organic detritus was scarce is suggested. The association with chemoautothrophic bacteria in modern analogs of Tubotomaculum provides a crucial piece of evidence to support the cache model. Integration of information from modern environments and the fossil record points to a connection between Tubotomaculum, mud volcanism, fluid venting, and hydrocarbon seeps. The presence of bioglyphs suggests firmgrounds that may have resulted from bottom current scouring of the sea sediment, leading to erosional exhumation of previously buried compacted sediment, which was therefore available for colonization by the infauna. However, an alternative scenario involves enriched fluids related to mud-volcanism resulting in reducing conditions that favored carbonate precipitation and nodule formation just a few centimeters below the sediment-water interface.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balanya, J. C., Crespo-Blanc, A., Estera, M., Lujan, M., Martín-Algarra, A., and Martín-Martín, M. 2004. Cordillera Bética y Baleares. 4.3 Complejo del Campo de Gibraltar, p. 389395. In Vera, J. A. (ed.), Geología de España. SGE-IGME, Madrid.Google Scholar
Bouillin, J.-P. and Raoult, J.-F. 1971. Présence sur le socle kabyle du Constantinois d'un olistostrome lié au charriage des flyschs; le Numidien peut-il être un néo-autochtone? Bulletin de la Société géologique de France, 13:338362.Google Scholar
Bourgois, J. 1978. La transversale de Ronda, Cordillères bétiques, Espagne: Données géologiques pour un modèle d'evolution de l'Arc de Gibraltar. Annales Scientifiques de l'Université de Besançon, 30:1445.Google Scholar
Braga, J. C., Martín-Martín, J. M., and Aguirre, J. 2002. Tertiary. Southern Spain, p. 320327. In Gibbons, W. and Moreno, T. (eds.), The Geology of Spain. Geological Society, London.Google Scholar
Bromley, R. G. 1996. Trace Fossils: Biology, Taphonomy and Applications. Chapman and Hall, London, 361 p.Google Scholar
Broquet, P. 1972. Etude géologique de la région des Madonies (Sicile) (sédimentologie et tectonique). Geologica Romana, 11:1114.Google Scholar
Chafetz, H. S. 1986. Marine peloids: a product of bacterially induced precipitation of calcite. Journal of Sedimentary Petrography, 56:812817.Google Scholar
Chafik, M., Hamoumi, N., and Louaya, A. 2007. Morphostructural study of the “Montagne de Tanger” mud volcano field (NW Alpine Rif Belt, Morocco). IOC Workshop Report No. 204:12.Google Scholar
Chamberlain, C. K. 1977. Ordovician and Devonian trace fossils from Nevada. Nevada Bureau of Mines and Geology, 90:124.Google Scholar
Crespo Blanc, A., Balanyá, J. C., Expósito, I., and Luján, M. 2010. Fault-bounded imbricate stacks vs. chaotic structure in the westernmost Flysch Trough units (northern Gibraltar Arc): a revised geological map. Geogaceta, 48:187190.Google Scholar
Didon, J., Durand-Delga, M., Esteras, M., Feinberg, H., Magné, J., and Suter, G. 1984. La Formation des Grès numidiens de l'arc de Gibraltar s'intercale stratigraphiquement entre des argiles oligocènes et des marnes burdigaliennnes. Comptes Rendus de l'Académie des Sciences de Paris, 299:121128.Google Scholar
Durand Delga, M. 1955. Etude géologique de lÓuest de la Chaîne numidique. Bulletin du Service de la Carte Géologique de lÁlgerie, 24:1533.Google Scholar
Eiserhardt, K. H., Koch, L., and Eiserhardt, W. L. 2001. Revision des Ichnotaxon Tomaculum GROOM, 1902. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 221:325358.Google Scholar
Esteras, M. 1982. Geología de la orilla europea del Estrecho de Gibraltar. Coloquio Internacional sobre la factibilidad de una comunicación fija a través del estrecho de Gibraltar. SECEGSA, Madrid, p. 305324.Google Scholar
Esteras Martín, M. 1984. Geología del Estrecho de Gibraltar. Revista de Obras Públicas, Julio-Agosto, p. 505526.Google Scholar
Frey, R. W., Howard, J. D., and Pryor, W. A. 1978. Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 23:199229.Google Scholar
Fu, S. 1991. Funktion, Verhalten und Einteilung fucoider und lophocteniider Lebensspuren. Courier Forschung-Institut Senckenberg, 135:179.Google Scholar
Garcia-Ramos, J. C., García Domingo, A., Gonzalez Lastra, J. A., Hernaiz, P., Ruiz, P., and Valenzuela, M. 1984. Significado ecológico y aplicaciones sedimentológicas de la traza fósil Tubotomaculum del Eoceno-Mioceno inferior de Andalucía. Publicaciones de Geología, Universidad Autónoma de Barcelona, 20:373378.Google Scholar
Giammarino, S. and Tedeschi, D. 1975. Première mention de Tubotomaculum dans les Ligurides internes. Bulletin de la Société géologique de France, (7), 17 (6):9991001.CrossRefGoogle Scholar
Giunta, G. 1985. Problematiche ed ipotesi sul bacino numidico nelle maghrebidi siciliane. Bollettino della Società Geologica Italiana, 104:239256.Google Scholar
Gomez de Llarena, J. 1946. Revisión de algunos datos paleontológicos del flysch Cretáceo y Nummulítico de Guipuzcoa. Notas y Comunicaciones IGME, 15:113165.Google Scholar
Gomez de Llarena, J. 1949. Datos paleoicnológicos. Notas y Comunicaciones IGME, 19:115127.Google Scholar
González, F. J., Somoza, L., León, R., Medialdea, T., de Torres, T., Ortiz, J. E., Lunar, R., Martín-Frías, J., and Merinero, R. 2012. Ferromanganese nodules and micro-hardgrounds associated with the Cadiz Contourite Channel (NE Atlantic): palaeoenvironmental records of fluid venting and bottom currents. Chemical Geology, 310–311:5678.Google Scholar
González Donoso, J. M., Linares, D., Martín Algarra, A., and Serrano, F. 1987. El complejo tectosedimentario del Campo de Gibraltar. Datos sobre su edad y significado geológico. Boletín de la Real Sociedad Española de Historia Natural (Geología), 82:233251.Google Scholar
Groom, T. 1902. The Sequence of the Cambrian and Associated Beds of the Malvern Hills. Quarterly Journal of the Geological Society; 58:89135.CrossRefGoogle Scholar
Guerrera, F., Loiacono, F., Puglisi, D., and Moretti, E. 1992. The Numidian nappe in the Maghrebian Chain: state of the art. Bollettino della Società Geologica Italiana, 111:217253.Google Scholar
Hamoumi, N. 2005a. The mud volcanic provinces of the Gulf of Cadiz Moroccan margin and NW Rif belt: challenging areas to better understand complex marine-land at a regional scale. CIESM Workshop Monographs, Monaco, 29:7985.Google Scholar
Hamoumi, N. 2005b. The Tubotomaculum: a fossil record of corals. Intergovernmental Oceanographic Commission, Workshop Report 197, p. 89.Google Scholar
Hamoumi, N. and Chafik, M. 2006. Tubotomaculum of NW Rif belt: mode of genesis and geological setting. Intergovernmental Oceanographic Commission, Workshop Report 201, p. 2324.Google Scholar
Häntzschel, W. 1975. Trace Fossils and Problematica, p. W1W269. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology. Pt W. Miscellanea 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Hofmann, H. 1972. Systematically branching burrows from the Lower Ordovician (Quebec Group) near Quebec, Canada. Paläontologische Zeitschrift, 46:186198.Google Scholar
Hoyez, B. 1975. Dispersion du matériel quartzeux dans les formations aquitaniennes de Tunisie septentrionale et d'Algérie nord-orientale. Bulletin de la Société géologique de France, (7), 17 (6):11471156.Google Scholar
I. G. M. E. 1983. Atlas hidrogeológico de la provincia de Málaga. Diputación de Málaga, Gráficas Urania S.A. Málaga, 151 p.Google Scholar
Izumi, K. 2012. Formation process of the trace fossil Phymatoderma granulata in the Lower Jurassic black shale (Posidonia Shale, southern Germany) and its paleoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 353–355:116122.Google Scholar
Jáger, V., Molnar, F., Buchs, D., and Kodêra, P. 2012. The connection between iron formations and “mud-shrimp” colonizations around sunken wood debris and hydrothermal sediments in a Lower Cretaceous continental riff basin, Mecsek Mts., Hungary. Earth-Science Reviews, 114:250278.Google Scholar
Leblanc, D. and Feinberg, H. 1982. Nouvelles données stratigraphiques et structurales sur le Numidien du Rif oriental (Maroc). Implications géodynamiques. Bulletin de la Société géologique de France, (7), 24 (4):861865.Google Scholar
Linares, L., Durán Valsero, J. J., Martínez Arias, A., López Geta, J. A., and García de Domingo, A. 2001. Modelos geológicos en los acuíferos kársticos del norte de la provincia de Málaga implicaciones hidrogeológicas. In Pulido Leboeuf, P.A., Pulido Bosch, A., and Vallejos Izquierdo, A. (eds.), V Simposio sobre el Agua en Andalucía, 2:5160.Google Scholar
Löwemark, L., Lin, H. L., and Sarnthein, M. 2006. Temporal variations of the trace fossil Zoophycos in a 425 Ka long sediment record from the South China Sea; implications for the ethology of the Zoophycos producer. Geological Magazine, 143:105114.CrossRefGoogle Scholar
Luján, M., Crespo-Blanc, A., and Balanyá, J. C. 1999. Structure and kinematics of the Aljibe Unit, north of Cádiz Province (Flysch Trough Complex, Betics). Geogaceta, 26:4750.Google Scholar
Luque, L., Silva, P. G., Zazo, C., Recio, J. M., Carrasco, P., Goy, J. L., Dueñas, M. I., Lario, J., Dabrio, C. J., González-Hernández, F. M., and Poza, L. 2001. Datos geofísicos y evolución sedimentaria de la Depresión de la Janda (Cádiz). Geogaceta, 29:6972.Google Scholar
Martín Algarra, A. 1987. Evolución geológica alpina del contacto entre las Zonas Internas y las Zonas Externas de la Cordillera Bética. Thesis, Universidad de Granada. 1171 p.Google Scholar
Mazumdar, A., Joshi, R. K., Peketi, A., and Kocherla, M. 2011. Occurrence of faecal pellet-filled simple and composite burrows in cold seep carbonates: a glimpse of a complex benthic ecosystem. Marine Geology, 289:117121.Google Scholar
Miller, W. III, Stefani, C., and Grandesso, P. 2004. Alternation of ecologic regimes in a deep-marine carbonate basin: calciturbidite trace fossils from the Cretaceous Scaglia Rossa, northeastern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 204:317330.Google Scholar
Moreno Serrano, F., García de Domingo, A., González Lastra, J., Hernaiz Huerta, P. P., and Ruiz Reig, P. 1988. Modelo de evolución tectónica del arco de Gibraltar (provincia de Cádiz). Boletín Geológico y Minero, 99:315339.Google Scholar
Morgiel, J., Olszewska, B., Sikora, W. J., and Wdowiarz, S. 1979. Sur l'âge Eocéne moyen-supérieur des argiles “sous-numidiennes” à Tubotomaculum dans la “vallée des Juifs” à Tanger (Rif occidental). Mines, Géologie et Energie, Rabat, 46:3031.Google Scholar
Pautot, G., Truillet, R., and Hoffert, M. 1975. “Tubotomaculum” et nodules de manganèse. Comparaison d'objets énigmatiques fossiles avec des concrétions marines et lacustres. Bulletin de la Société géologique de France, (7), 17 (1):2537.Google Scholar
Perrone, V., de Capoa, P., and Cesarini, F., 1998. Remise en question, á propos de la Nappe du Val Marecchia, d'attributions paléogéographiques et structurales de l'Apennin nord-oriental (Italie). Comptes Rendus de l'Académie des sciences de Paris, Sciences de la Terre et des planètes, 326:347353.Google Scholar
Pickerill, R. K. 1989. Compaginatichnus: A new ichnogenus from Ordovician flysch of eastern Canada. Journal of Paleontology, 63:913919.Google Scholar
Raoult, J.-F. 1975. Évolution paléogéographique et structurale de la chaîne alpine entre le golfe de Skikda et Constantine (Algérie orientale). Bulletin de la Société géologique de France, 17:394409.Google Scholar
Rico-García, A. 2007. El Neógeno superior marino en Vejer de la Frontera (Cádiz, España, SO) y su evolución regresiva. Geogaceta, 42:115118.Google Scholar
Rodríguez Jiménez, P. and Ruiz Cruz, M. D. 1988. Mineralogía y génesis de las arcillas del Campo de Gibraltar. II. Series base del Aljibe. Estudios Geológicos, 44:145158.Google Scholar
Savrda, C. E., Browning, J. V., Krawinkle, H., and Hesselboh, S. P. 2001. Firmground ichnofacies in deepwater sequence stratigraphy, Tertiary clinoform-toe deposits, New Jersey slope. PALAIOS, 16:294305.2.0.CO;2>CrossRefGoogle Scholar
Seilacher, A. 2007. Trace Fossil Analysis. Springer-Verlag, Berlin, 226 p.Google Scholar
Senowbari-Daryan, B., Gaillard, C., and Peckmann, J. 2007. Crustacean microcoprolites from Jurassic (Oxfordian) hydrocarbon-seep deposits of Beauvoisin, southeastern France. Facies, 53:229238.Google Scholar
Uchman, A. 1995. Taxonomy and paleoecology of flysch trace fossils: The Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria, 15:1115.Google Scholar
Uchman, A. 1998. Wybrane skamieniałości śladowe z warstw hieroglifowych jednostki dukielskiej (eocen) w Bieszczadach Zachodnich (Selected trace fossils from the Hieroglyphic Beds (Eocene) in the region of the West Bieszczady Mts.). Roczniki Bieszczadzkie, for 1997, 6:3947.Google Scholar
Uchman, A. 1999. Ichnology of the Rhenodanubian Flysch (Lower Cretaceous–Eocene) in Austria and Germany. Beringeria, 25:67173.Google Scholar
Uchman, A. 2007. Trace fossils of the Pagliaro Formation (Paleocene) in the North Apennines, Italy. Beringeria, 37:217237.Google Scholar
Uchman, A. and Gażdzicki, A. 2010. Phymatoderma melvillensis isp. nov. and other trace fossils from the Cape Melville Formation (lower Miocene) of King George Island, Antarctica. Polish Polar Research, 31:8399.Google Scholar
Wetzel, A. 2010. Deep-sea ichnology: observations in modern sediments to interpret fossil counterparts. Acta Geologica Polonica, 60:125138.Google Scholar
Supplementary material: File

García-Ramos et al. supplementary material

García-Ramos et al. supplementary material 1

Download García-Ramos et al. supplementary material(File)
File 11.2 KB
Supplementary material: File

García-Ramos et al. supplementary material

García-Ramos et al. supplementary material 2

Download García-Ramos et al. supplementary material(File)
File 47.2 KB
Supplementary material: File

García-Ramos et al. supplementary material

García-Ramos et al. supplementary material 3

Download García-Ramos et al. supplementary material(File)
File 96 KB