Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T04:19:27.622Z Has data issue: false hasContentIssue false

Morphology and taxonomy of Paleozoic millipedes (Diplopoda: Chilognatha: Archipolypoda) from Scotland

Published online by Cambridge University Press:  20 May 2016

Heather M. Wilson
Affiliation:
1Department of Entomology, 4112 Plant Sciences Building, University of Maryland, College Park 20742
Lyall I. Anderson
Affiliation:
2Department of Geology and Zoology, National Museums of Scotland, Chambers Street, Edinburgh EH1 1JF, United Kingdom,

Abstract

New millipede specimens from the Paleozoic of Scotland are described, including Archidesmus macnicoli Peach, 1882, from the Lower Devonian (Lochkovian) Tillywhandland Quarry SSSI and three new taxa—Albadesmus almondi, Pneumodesmus newmani, and Cowiedesmus eroticopodus—from the mid Silurian (late Wenlock—early Ludlow) Cowie Formation at Cowie Harbour. Cowiedesmus eroticopodus new species is placed within the new Cowiedesmidae within the new order Cowiedesmida. Kampecaris tuberculata Brade-Birks from the Lower Devonian (Siegenian) of the Lanark Basin near Dunure is shown not to be a kampecarid myriapod, redescribed as Palaeodesmus tuberculata and placed order incertae sedis within Archipolypoda. Anthracodesmus macconochiei Peach is also redescribed and tentatively placed order incertae sedis within Archipolypoda. Archidesmus macnicoli, Albadesmus almondi, and Palaeodesmus tuberculata are each demonstrated to have broad sternites with laterally placed coxal sockets and paramedian pores containing paired valves. These pores are interpreted as having housed eversible vesicles. Some specimens of Archidesmus macnicoli and Cowiedesmus eroticopodus are male and have a pair of modified legs on trunk segment 8, identified as leg pairs 10 and 11, respectively. The presence of modified anterior legs restricted to segment 8 increases the range of variability known in modified appendage location in male millipedes and compounds existing uncertainty about using the presence of gonopods on trunk segment 7 as a synapomorphy of Helminthomorpha. An affinity between Archidesmida and Cowiedesmida is suggested based on possession of modified legs on segment 8 and Archidesmida + Cowiedesmida is placed along with Euphoberiida in Archipolypoda based on possession of free, broad sternites with bivalved paramedian pores and fused pleurotergites. The oldest known evidence of spiracles is demonstrated in Pneumodesmus newmani, proving that the oldest known millipedes were fully terrestrial.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almond, J. E. 1985. The Silurian-Devonian fossil record of the Myriapoda. Philosophical Transactions of the Royal Society of London, Series B, 309:227237.Google Scholar
Almond, J. E. 1986. Studies on Palaeozoic Arthropoda. Unpublished Ph.D. thesis, University of Cambridge, UK, 320 p.Google Scholar
Armstrong, M., and Paterson, I. B. 1970. The Lower Old Red Sandstone of the Strathmore Region. Report of the Institute of Geological Sciences, London, 70(12): 123.Google Scholar
Barnett, M., and Telford, S. R. 1996. Sperm competition and the evolution of millipede genitalia. In Geoffroy, J.-J., Mauriès, J. P., and Duy-Jacquemin, M. Nguyen (eds.), Acta Myriapodologica. Mémoires Museum national d'Histoire naturelles, 169:331339.Google Scholar
Blower, J. G. 1985. Millipedes. E. J. Brill/Dr. W. Backhuys, London, for the Linnean Society of London, 242 p.Google Scholar
Braddy, S. J. 2000. Eurypterids from the Early Devonian of the Midland Valley of Scotland. Scottish Journal of Geology, 36:115122.Google Scholar
Brade-Birks, S. G. 1923. Notes on Myriapoda, xxxviii. Kampecaris tuberculata, n. sp., from the Old Red Sandstone of Ayrshire. Proceedings of the Royal Physical Society of Edinburgh, 20:277280.Google Scholar
Brauckmann, C., and Kemper, M. 1985. Ein Tausendfüßler (Myriapoda:?Archipolypoda) aus dem Namurium B von Hagen-Vorhalle (unt. Ober-Karbon; West-Deutschland). Dortmunder Beiträge zur Landes-kunde: Naturwissenschaftliche Mitteilungen, 19:6569.Google Scholar
Brolemann, H. W. 1935. Faune de France, 29: Myriapodes Diplopodes (Chilognathes I). Paul Lechevalier, Paris, 368 p.Google Scholar
Budd, G. E. 1999. Does evolution in body patterning genes drive morphological change—or vice versa? BioEssays, 21:326332.Google Scholar
Burke, J. J. 1979. A new millipede genus, Myriacantherpestes (Diplopoda, Archipolypoda) and a new species, Myriacantherpestes bradebirksi, from the English Coal Measures. Kirtlandia, 30:124.Google Scholar
Campbell, R. 1913. The geology of south-eastern Kincardineshire. Transactions of the Royal Society of Edinburgh, 48:923–60.Google Scholar
Carl, J. 1914. Die Diplopoden von Columbien nebst Beiträgen zur Morphologie der Stemmatoiliden. Mémoires de la Société Neuchâteloise de Science Naturelle, 5:821993.Google Scholar
Carl, J. 1942. Contribution à la connaissance des Limacomorpha. Essai de morphology comparée. Revue Suisse de Zoologie, 49:133167.Google Scholar
Cleal, C. J., and Thomas, B. A. 1995. Palaeozoic Palaeobotany of Great Britain. Geological Conservation review series, Volume 9. Chapman & Hall, London, 295 p.Google Scholar
Demange, J.-M. 1967. Recherches sur la segmentation du tronc des Chilopodes et des Diplopodes Chilognathes (Myriapodes). Mémoires du Museum National d'Histoire Naturelle A, 44:1188.Google Scholar
Dineley, D. L. 1999. Early Devonian fossil fishes sites of Scotland, p. 147165. In Dineley, D. L. and Metcalf, S. J. (eds.), Fossil Fishes of Great Britain. GCR Series.Google Scholar
Dohle, W. 1964. Die Embryonalentwicklung von Glomeris marginata (Villers) im Vergleich zur Entwicklung anderer Diplopoden. Zoologischer Jahrbucher (Anatomie), 81:241310.Google Scholar
Dohle, W. 1974. The segmentation of the germ band of Diplopoda compared with other classes of arthropods, p. 143161. In Blower, J. G. (ed.), Myriapoda. Symposium of the Zoological Society of London, 32. Academic Press, London.Google Scholar
Eisenbeis, G. 1976. Zur Feinstruktur und Histochemie des Transportepithels abdominaler Koxalblasen der Doppelschwanz-Art Campodea staphylinus (Diplura: Campodeidae). Entomologica Germanica, 3:185201.Google Scholar
Eisenbeis, G. 1983. The water balance of Trigoniophtalmus alternatus (Silvestri, 1904) (Archaeognatha: Michilidae). Pedobiologia, 25:207215.Google Scholar
Enghoff, H. 1982. An extraordinary new genus of the millipede family Nemasomatidae (Diplopoda: Julida). Myriapodologica, 1:6980.Google Scholar
Enghoff, H. 1984. Phylogeney of millipedes—a cladistic analysis. Zeitschrift für zoologische systematik und Evolutionsforschung, 22:826.Google Scholar
Enghoff, H. 1990. The ground-plan of chilognathan millipedes (external morphology), p. 121. In Minelli, A. (ed.), Proceedings of the 7th International Congress of Myriapodology. E. J. Brill, Leiden.Google Scholar
Enghoff, H., Dohle, W., and Blower, J. G. 1993. Anamorphosis in millipedes (Diplopoda)—the present state of knowledge with some developmental and phylogenetic considerations. Zoological Journal of the Linnean Society, 109:103234.Google Scholar
Fritsch, A. 1899. Fauna der Gaskohle und der Kalksteine der Performation Böhmens, v. 4, pt. 1. Prague, 152 p.Google Scholar
Geikie, A. 1897. The Ancient Volcanoes of Great Britain. Macmillan, London, 237 p.Google Scholar
Gervais, P. 1844. Études sur les Myriapodes. Annales des Sciences Naturelle, Zoologie, 3e Série 2:51.Google Scholar
Gervais, P. 1847. Myriapodes. In Walckenaer, C. A. and Gervais, P. (eds.), Histoire Naturelle des Insectes Aptères, Volume 4. Librairie Encyclopédique de Roret, Paris.Google Scholar
Gill, B. 1981. Die Coxalblasen der Symphyla: eine elektronenmikroskopische Untersuchung des Blasenepithels. Staatsexamensarbeit, Mainz, 304 p.Google Scholar
Gillen, C., and Trewin, N. H. 1987. Dunnottar to Stonehaven and the Highland Boundary Fault, p. 265273. In Trewin, N. H., Kneller, B. C., and Gillen, C. (eds.), Excursion Guide to the Aberdeen Area. Scottish Academic Press, Edinburgh.Google Scholar
Giribet, G., Edgecombe, G. D., and Wheeler, W. C. 2001. Arthropod phylogeny based on eight molecular loci and morphology. Nature, 413:157161.Google Scholar
Gray, J., and Shear, W. 1992. Early life on land. American Scientist, 80(Sept.-Oct.):444456.Google Scholar
Haacker, U. 1964. Paarungverhalten des Saftkuglers Glomeris. Natur und Museum, 94:263727.Google Scholar
Hannibal, J. T. 1995. Modified legs (clasping appendages?) of Carboniferous euphoberiid millipeds (Diplopoda: Euphoberiida). Journal of Paleontology, 69:932938.Google Scholar
Hannibal, J. T. 2001. On the identity of Archiulus? glomeratus Scudder, 1890, a supposed milliped (Diplopoda: Xyloiulidae) from the Pennsylvanian of Illinois. Kirtlandia, 52:17.Google Scholar
Hilken, G. 1998. Vergleich von Tracheensystemen unter phylogenetischen Aspekt. Verhandlungen des naturwissenschaftlichen Vereins in Hamburg (NF), 37:594.Google Scholar
Hoffman, R. L. 1963. New genera and species of upper Paleozoic Diplopoda. Journal of Paleontology, 37:167174.Google Scholar
Hoffman, R. L. 1969. Myriapoda, exclusive of Insecta, p. R572606. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. R, Volume 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Hoffman, R. L. 1979. Classification of the Diplopoda. Muséum d'Histoire Naturelle, Geneva, 237 p.Google Scholar
Hoffman, R. L. 1982. Diplopoda, p. 689724. In Parker, S. P. (ed.), Synopsis and Classification of Living Organisms. Volume 2. McGraw-Hill Book Company, New York.Google Scholar
Johnson, E. W., Briggs, D. E. G., Suthren, R. J., Wright, J. L., and Tunnicliff, S. P. 1994. Non-marine arthropod traces from the subaerial Ordovician Borrowdale Volcanic Group, English Lake District. Geological Magazine, 131:395406.Google Scholar
Kokelaar, B. P. 1982. Fluidization of wet sediment during the emplacement and cooling of various igneous bodies. Journal of the Geological Society of London, 139:2133.Google Scholar
Kraus, O. 1990. On the so-called thoracic segments in Diplopoda, p. 6368. In Minelli, A. (ed.), Proceedings of the 7th International Congress of Myriapodology. E. J. Brill, Leiden.Google Scholar
Latzel, R. 1884. Die Myriopoden der österreichisch-ungarischen Monarchie. 2 Hälfte. Alfred Hölder, Wein, 414 p.Google Scholar
Leach, W. 1814. Classe des Myriapodes. p. 385396. In Piveteau, J. (ed.), Traité de Paleontologie, Volume III. Masson, Paris.Google Scholar
Manton, S. M. 1956. The evolution of arthropodan locomotory mechanisms, Pt. 5, The structure, habits and evolution of the Pselaphognatha (Diplopoda). Journal of the Linnean Society (Zoology), 43:153187.Google Scholar
Marshall, J. E. A. 1991. Palynology of the Stonehaven Group, Scotland: evidence for a Mid Silurian age and its geological implications. Geological Magazine, 128:283286.Google Scholar
Meek, F. B., and Worthen, A. H. 1868a. Preliminary notice of a scorpion, a Eurypterus? and other fossils, from the Coal-measures of Illinois. American Journal of Science, 2nd series, 46:2527.Google Scholar
Meek, F. B., and Worthen, A. H. 1868b. Articulate fossils of the Coal Measures. Illinois Geological Survey Bulletin, 3:558559.Google Scholar
Minelli, A. 2000. Holomeric vs. meromeric segmentation: a tale of centipedes, leeches, and rhombomeres. Evolution and Development, 2:3548.Google Scholar
Minelli, A., and Bortoletto, S. 1988. Myriapod metamerism and arthropod segmentation. Biological Journal of the Linnean Society, 33:323343.Google Scholar
Minelli, A., Foddai, D., Pereira, L. A., and Lewis, J. G. E. 2000. The evolution of segmentation of centipede trunk and appendages. Journal of Systematic and Evolutionary Research, 38:103117.Google Scholar
Peach, B. N. 1882. On some fossil myriapods from the Lower Old Red Sandstone of Forfarshire. Proceedings of the Royal Physical Society, 7:177188.Google Scholar
Peach, B. N. 1899. On some new myriapods from the Palaeozoic rocks of Scotland. Proceedings of the Royal Physical Society, 14:113126.Google Scholar
Pflugfelder, O. 1932. Über den Mechanismus der Segmentbildung bei der Embryonalentwicklung und Anamorphose von Platyrrhacus amauros Attems. Zeitschrift für wissenschatliche Zoologie, 140:650723.Google Scholar
Pollard, J. E., and Walker, E. F. 1984. Reassessment of sediments and trace fossils from Old Red Sandstone (Lower Devonian) of Dunure, Scotland, described by John Smith (1909). Geobios, 17:567576.Google Scholar
Powrie, J. 1864. On the fossiliferous rocks of Forfarshire and their contents. Quarterly Journal of the Geological Society of London, 20:413–29.Google Scholar
Richardson, J. B., Ford, J. H., and Parker, F. 1984. Miospores, correlation and age of some Scottish Lower Old Red Sandstone sediments from the Strathmore Region (Fife and Angus). Journal of Micropalaeontology, 3:109124.CrossRefGoogle Scholar
Rolfe, W. D. I. 1980. Early invertebrate terrestrial faunas, p. 117157. In Panchen, A. L. (ed.), The Terrestrial Environment and the Origin of Land Vertebrates. Academic Press, London.Google Scholar
Schram, F. R. 1984. Fossil Syncarida. Transactions of the San Diego Society of Natural History, 20:189246.Google Scholar
Scudder, S. H. 1882. Archipolypoda, a subordinal type of spined myriapods from the Carboniferous Formation. Boston Society for Natural History, 3:143182.Google Scholar
Scudder, S. H. 1885. Systematische Übersicht der fossilen Myriopoden, Arachnoiden, und Insekten, p. 721831. In Zittel, K. A. (ed.), Handbuch der Palaeontologie. R. Oldenburg, München.Google Scholar
Scudder, S. H. 1886. Systematic review of our present knowledge of fossil insects, including myriapods and arachnids. Bulletin of the United States Geological Survey 5(31):1128.Google Scholar
Scudder, S. H. 1887. Myriapodes, Arachnides, Insectes, p. 720833. In Zittel, K. A. and Barrois, C. E. (eds.), Traité de Paléontologie. O. Dion, Paris.Google Scholar
Scudder, S. H. 1890. New Carboniferous Myriapoda from Illinois. Memoirs of the Boston Society of Natural History, 4:417442.Google Scholar
Shear, W. A. 1994. Myriapodous arthropods from the Viséan of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 84:309316.Google Scholar
Shear, W. A. 1998. The fossil record and evolution of the Myriapoda, p. 211219. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. Systematics Association Special Volume Series 55. Chapman & Hall, London.Google Scholar
Shear, W. A., Hannibal, J. T., and Kukalová-Peck, J. 1992. Terrestrial arthropods from Upper Pennsylvanian rocks at the Kinney Brick Quarry, New Mexico. New Mexico Bureau of Mines & Mineral Resources Bulletin, 138:135141.Google Scholar
Silvestri, F. 1916. Contribuzione alla conoscenza degli Stemmiuloidea (Diplopoda). Bollettino del Laboratorio di Zoologia generale e agraria di Portici, 10:287347.Google Scholar
Smith, J. 1909. Upland Fauna of the Old Red Sandstone Formation of Carrick, Ayrshire. A. W. Cross, Kilwinning, Scotland, 41 p.Google Scholar
Trewin, N. H. 1986. Palaeoecology and sedimentology of the Achanarras fish bed of the Middle Old Red Sandstone, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 77:2146.Google Scholar
Trewin, N. H., and Davidson, R. G. 1996. An Early Devonian lake and its associated biota in the Midland Valley of Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 86:233246.Google Scholar
Verhoeff, K. W. 1926–1932. Klasse Diplopoda. In Bronn, H. G. (ed.), Klassen und Ordnungen des Tier-Reichs, Volume 5, book 2. Akademische Verlagsgesellschaft m.b. H., Leipzig.Google Scholar
Verhoeff, K. W. 1940. Zur vergleichenden Morphologie der Colobognathen. Archiv für Naturgeschichte, N. F. 9:501511.Google Scholar
Walker, E. F. 1985. Arthropod ichnofauna of the Old Red Sandstone at Dunure and Montrose, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 76:287297.Google Scholar
Wellman, C. 1993. A land plant microfossil assemblage of Mid Silurian age from the Stonehaven Group, Scotland. Journal of Micropalaeontology, 12:4766.Google Scholar
Westoll, T. S. 1951. The vertebrate-bearing strata of Scotland, p. 521. Report XVIII International Geological Congress, Pt. II, Great Britain, 1948.Google Scholar
Wilson, H. M. 2002. Muscular anatomy of the millipede Phyllogono-streptus nigrolabiatus (Diplopoda: Spirostreptida) and its bearing on the millipede “thorax.” Journal of Morphology, 251:256275.Google Scholar
Wilson, H. M., and Shear, W. A. 2000. Microdecemplicida, a new order of minute arthropleurideans (Arthropoda: Myriapoda) from the Devonian of New York State, U. S. A. Transactions of the Royal Society of Edinburgh: Earth Sciences, 90:351375.Google Scholar
Witham, H. T. M. 1831. Vegetation of the first period of an ancient world. Philosophical Magazine, 7:2331.Google Scholar