Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T11:31:50.508Z Has data issue: false hasContentIssue false

Mystacinid bats (Microchiroptera) from the Australian Tertiary

Published online by Cambridge University Press:  14 July 2015

S. J. Hand
Affiliation:
1School of Biological Science, University of New South Wales, Sydney, New South Wales 2052, Australia
P. Murray
Affiliation:
2Northern Territory Museum of Arts and Sciences, GPO Box 2109, Alice Springs, Northern Territory 0871, Australia
D. Megirian
Affiliation:
3Northern Territory Museum of Arts and Sciences, PO Box 4646, Darwin, Northern Territory 0801, Australia
M. Archer
Affiliation:
1School of Biological Science, University of New South Wales, Sydney, New South Wales 2052, Australia
H. Godthelp
Affiliation:
1School of Biological Science, University of New South Wales, Sydney, New South Wales 2052, Australia

Abstract

A new genus and three new species of the microchiropteran family Mystacinidae are described from Miocene freshwater limestones in northern Australia. The type species, Icarops breviceps new genus and species, is from the middle Miocene Bullock Creek deposit, Northern Territory; I. aenae new species and I. paradox new species are from the slightly older (early Miocene) Wayne's Wok and Neville's Garden Sites at Riversleigh, northwestern Queensland. Fossil mystacinids are rare in each deposit and represented so far only by lower teeth and dentary fragments. They are characterized by a suite of apomorphies shared only with Quaternary mystacinids endemic to New Zealand. The family Mystacinidae has no pre-Pleistocene record and its relationships to other groups of bats remain unclear. Possible sister-groups include South American noctilionoids and the cosmopolitan molossoids and/or vespertilionoids. The presence of plesiomorphic mystacinids in the Australian Tertiary suggests an Australian origin for the family.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archer, M., Godthelp, H., Hand, S. J., and Megirian, D. 1989. Fossil mammals of Riversleigh, northwestern Queensland: preliminary overview of biostratigraphy, correlation and environmental change. Australian Zoologist, 25:3569.CrossRefGoogle Scholar
Archer, M., Hand, S. J., and Godthelp, H. 1994. Riversleigh. The Story of Animals in Ancient Rainforests of Inland Australia. 2nd edition. Reed Books, Sydney, 264 p.Google Scholar
Beard, K. C., Sogé, B., and Krishtalka, L. 1992. A primitive vespertilionoid bat from the early Eocene of central Wyoming. Comptes Rendus de l'Academie des Sciences, Paris, 314, II:735741.Google Scholar
Creaser, P. 1997. Oligocene-Miocene sediments of Riversleigh: the potential significance of topography. Memoirs of the Queensland Museum, 41:303314.Google Scholar
Daniel, M. J. 1979. The New Zealand short-tailed bat, Mystacina tuberculata, a review of present knowledge. New Zealand Journal of Zoology, 6:357370.CrossRefGoogle Scholar
Daniel, M. J. 1990. Lesser short-tailed bat, p. 123130. In King, C. M. (ed.), The Handbook of New Zealand Mammals. Oxford University Press, Auckland.Google Scholar
Daniel, M. J., and Williams, G. R. 1984. A survey of the distribution, seasonal activity and roost sites of New Zealand bats. New Zealand Journal of Ecology, 7:925.Google Scholar
Ducrocq, S., Jaeger, J.-J., and Sigé, B. 1993. Un mégachiroptère dans l'Eocène supérieur de Thaïlande. Incidence dans la discussion phylogénique du groupe. Neues Jahrbuch für Geologie und Paläontologie MonatsHefte, 1993(9):561575.CrossRefGoogle Scholar
Dwyer, P. D. 1962. Studies of the two New Zealand bats. Zoology Publications from Victoria University of Wellington, 28:128.Google Scholar
Eckroyd, C. 1993. In search of the wood rose. Forest and Bird, Feb. 93:2428.Google Scholar
Fleming, C. A. 1979. The Geological History of New Zealand and its Life. Auckland University Press, Auckland, 141 p.Google Scholar
Freeman, P. W. 1984. Functional analysis of large animalivorous bats (Microchiroptera). Biological Journal of the Linnean Society, 21:387408.CrossRefGoogle Scholar
Freeman, P. W. 1988. Frugivorous and animalivorous bats (Microchiroptera): dental and cranial adaptations. Biological Journal of the Linnean Society, 33:249272.CrossRefGoogle Scholar
Hand, S. J. 1990. First Tertiary molossid (Microchiroptera: Molossidae) from Australia: its phylogenetic and biogeographic implications. Memoirs of the Queensland Museum, 28:175192.Google Scholar
Hand, S. J., Dawson, L., and augee, M. 1988. Macroderma koppa, a new Pliocene species of false vampire bat (Microchiroptera: Megadermatidae) from Wellington Caves, New South Wales. Records of the Australian Museum, 40:343351.CrossRefGoogle Scholar
Hand, S. J., Murray, P., and Megirian, D. 1995. A new genus and three new species of molossid bats from the Miocene of Northern Australia. Conference on Australasian Vertebrate Evolution, Palaeontology and Systematics 95, Canberra, Abstracts: 12.Google Scholar
Hand, S. J., Novacek, M., Godthelp, H., and Archer, M. 1994. First Eocene bat from Australia. Journal of Vertebrate Paleontology, 14:375381.CrossRefGoogle Scholar
Hershkovitz, P. 1972. The recent mammals of the neotropical region: a zoogeographic and ecological review, p. 311432. In Keast, A., Erk, F. C. and Glass, B. (eds.), Evolution, Mammals and Southern Continents. State University New York Press, Albany.Google Scholar
Koopman, K. F. 1985. A synopsis of the families of bats, Pt. VII. Bat Research News, 25:2529.Google Scholar
Legendre, S. 1984. Étude odontologique des représentants actuels du groupe Tadarida (Chiroptera, Molossidae). Implications phylogéniques, systématiques et zoogeographiques. Revue suisse de Zoologie, 91:399442.CrossRefGoogle Scholar
Legendre, S. 1985. Molossidés (Mammalia, Chiroptera) cénozoïques de l'Ancien et du Nouveau Monde; statut systématique; intégration phylogénique des données. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 170:205227.CrossRefGoogle Scholar
Miller, G. S. 1907. The families and genera of bats. Bulletin of the United States National Museum, 57:1282.Google Scholar
Murray, P. F., and Megirian, D. 1992. Continuity and contrast in middle and late Miocene vertebrate communities from the Northern Territory. The Beagle, Records of the Northern Territory Museum of Arts and Sciences, 9:195217.Google Scholar
Murray, P. F., and Strickler, T. 1975. Notes on the structure and function of cheek pouches within the Chiroptera. Journal of Mammalogy, 56:673676.CrossRefGoogle Scholar
Pierson, E. D. 1986. Molecular systematics of the Microchiroptera: higher taxon relationships and biogeography. Unpubl. Ph.D. dissertation, University of California, Berkeley, California, 262 p.Google Scholar
Pierson, E. D., Sarich, V. M., lowenstein, J. M., daniel, M. J., and Rainey, W. E. 1986. A molecular link between the bats of New Zealand and South America. Nature, 6083:6063.CrossRefGoogle Scholar
Sigé, B. 1968. Les chiroptères du Miocene inférieur de Bouzigues. I. Étude systématique. Palaeovertebrata, 1:65133.Google Scholar
Sigé, B. 1985. Les chiroptères oligocènes du Fayum, Egypte. Geologica et Palaeontologica, 19:161189.Google Scholar
Sigé, B. 1991. Rhinolophoidea et Vespertilionoidea (Chiroptera) du Chambi (Eocène inférieur de Tunisie). Aspects biostratigraphique, biogéographique and paléoécologique de l'origine des chiroptères modernes. Neues Jahrbuch für Geologie und Palaöntologie Abhandlungen, 182:355376.CrossRefGoogle Scholar
Simmons, N. B. 1996. Bat diversification and palaeobiogeography: implications of a new higher-level phylogeny. Journal of Vertebrate Paleontology, 16(3) Abstracts:66A.Google Scholar
Simmons, N. B. In press. A reappraisal of interfamilial relationships of bats. In Kunz, T. and Racey, P. (eds.), Proceedings of the 10th International Bat Research Conference. Smithsonian Institution, Washington.Google Scholar
Worthy, T. H., and Holdaway, R. N. 1994. Scraps from an owl's table—predator activity as a significant taphonomic process newly recognised from New Zealand Quaternary deposits. Alcheringa, 18:229245.CrossRefGoogle Scholar