Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T11:26:34.583Z Has data issue: false hasContentIssue false

A new ichnospecies of Spongeliomorpha from the Pleistocene of Sicily

Published online by Cambridge University Press:  20 May 2016

Assunta D'Alessandro
Affiliation:
Dipartemento di Geologia e Geofisico, Campus Universitario, Bari University, 70125 Bari, Italy
Richard G. Bromley
Affiliation:
Geologisk Institut, Øster Voldgade 10, Copenhagen University, 1350 Copenhagen K, Denmark

Abstract

A branched, scratch-ornamented burrow system is described from early Pleistocene sediments of Sicily, Italy. The trace fossil occurs in a bed of volcanic ash beneath a shallow marine silty unit and is remarkable in possessing enlarged, ovoid chambers above the multiple branching points of a maze. The structure, named Spongeliomorpha sicula, was probably produced by crustaceans. A likely interpretion is as an agrichnion, in which microbial gardening took place in the chambers.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernasconi, M. P., and Robba, E. 1993. Molluscan palaeoecology and sedimentological features: an integrated approach from the Miocene Medusa section, northern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 100:267290.Google Scholar
Bromley, R. G. 1990. Trace Fossils: Biology and Taphonomy. Unwin Hyman, London, 280 p.Google Scholar
Bromley, R. G., and Allouc, J. 1992. Trace fossils in bathyal hardgrounds, Mediterranean Sea. Ichnos, 2:4354.Google Scholar
Bromley, R. G., and Asgaard, U. 1979. Triassic fresh water ichnocoenoses from Carlsberg Fjord, East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 28:3980.Google Scholar
Bromley, R. G., and Goldring, R. 1992. The palaeoburrows at the Cretaceous to Palaeocene firmground unconformity in southern England. Tertiary Research, 13:95102.Google Scholar
Calzada, S. 1981. Revisión del icno Spongeliomorpha iberica Saporta, 1887 (Mioceno de Alcoy, España). Boletín de la Real Sociedad Española de Historia Natural (Geologia), 79:189195.Google Scholar
Curran, H. A. 1976. A trace fossil brood structure of probable callianassid origin. Journal of Paleontology, 50:249259.Google Scholar
Curran, H. A., and Frey, R. W. 1977. Pleistocene trace fossils from North Carolina (U.S.A.), and their Holocene analogues, p. 139162. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal Special Issue, 9.Google Scholar
Ekdale, A. A., Bromley, R. G., and Pemberton, S. G. 1984. Ichnology. Trace fossils in sedimentology and stratigraphy. Society of Economic Paleontologists and Mineralogists, Short Course no. 15, 317 p.Google Scholar
Forbes, A. T. 1973. An unusual abbreviated larval life in the estuarine burrowing prawn Callianassa kraussi (Crustacea: Decapoda: Thalassinidea). Marine Biology, 22:361365.Google Scholar
Frey, R. W., and Howard, J. D. 1975. Endobenthic adaptations of juvenile thalassinidean shrimps. Geological Society of Denmark Bulletin, 24:283297.Google Scholar
Fürsich, F. T., Kennedy, W. J., and Palmer, T. J. 1981. Trace fossils at a regional discontinuity surface: the Austin/Taylor (Upper Cretaceous) contact in central Texas. Journal of Paleontology, 55:537551.Google Scholar
Metz, R. 1993. A new ichnospecies of Spongeliomorpha from the late Triassic of New Jersey. Ichnos, 2:259262.CrossRefGoogle Scholar
Nash, R. D. M., Chapman, C. J., Atkinson, R. J. A., and Morgan, P. J. 1984. Observations on burrows and burrowing behaviour of Calocaris macandreae (Crustacea: Decapoda: Thalassinidea). Journal of Zoology, London, 202:425439.CrossRefGoogle Scholar
Ott, J. A., Fuchs, B., and Malasek, A. 1976. Observations on the biology of Callianassa stebbingi Borrodaille and Upogebia litoralis Risso and their effect upon the sediment. Senckenbergiana Maritima, 8:6179.Google Scholar
Pérès, J. M. 1967. The Mediterranean benthos. Oceanography Marine Biology Annual Review, 5:449533.Google Scholar
Pérès, J. M., and Picard, J. 1964. Nouveau manual de bionomie benthique de la Mer Méditerranee. Recueil des Travaux de la Station Marine D'Endôume, 14:1114.Google Scholar
Ratcliffe, B. C., and Fagerstrom, J. A. 1980. Invertebrate lebensspuren of Holocene floodplains: their morphology, origin and paleoecological significance. Journal of Paleontology, 54:614630.Google Scholar
Rhoads, D. C., Webb, J. E., Dörjes, D. J., Gray, J. S., Hessler, R. R., van Andel, T. H., Werner, F., Wolff, T., and Zijlstra, J. J. 1976. Organism-sediment relationships, p. 273295. In McCave, I. N. (ed.), The Benthic Boundary Layer. Plenum Press, New York.Google Scholar
Saporta, G. de. 1887. Nouveaux documents relatifs aux organismes problématiques des anciennes mers. Masson, Paris, 100 p.Google Scholar
Savrda, C. E., and Bottjer, D. J. 1987. The exaerobic zone, a new oxygen-deficient marine biofacies. Nature, 327:5456.CrossRefGoogle Scholar
Seilacher, A. 1977. Pattern analysis of Paleodictyon and related trace fossils, p. 289334. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal, Special Issue, 9.Google Scholar
Shinn, E. A. 1968. Burrowing in Recent lime sediments of Florida and the Bahamas. Journal of Paleontology, 42:879894.Google Scholar
Suchanek, T. H. 1983. Control of seagrass communities and sediment distribution by Callianassa (Crustacea, Thalassinidea) bioturbation. Journal of Marine Research, 41:281298.Google Scholar
Suchanek, T. H. 1985. Thalassinid shrimp burrows: ecological significance of species-specific architecture. Fifth International Coral Reef Congress, Proceedings:205210.Google Scholar
Wohlenberg, E. 1937. Die Wattenmeer-Lebensgemeinschaften im Königshafen von Sylt. Helgoländer Wissenschaftliche Meeresuntersuchungen, 1:192.Google Scholar