Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T04:24:44.942Z Has data issue: false hasContentIssue false

A new marine woodground ichnotaxon from the Lower Cretaceous Mannville Group, Saskatchewan, Canada

Published online by Cambridge University Press:  17 August 2020

Scott Melnyk
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AlbertaT6E 2E3, Canada
Stephen Packer
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AlbertaT6E 2E3, Canada
John-Paul Zonneveld
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AlbertaT6E 2E3, Canada
Murray K. Gingras
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AlbertaT6E 2E3, Canada

Abstract

A new wood-boring ichnospecies is described from transgressive (lagoonal) deposits of the Lower Cretaceous Sparky Formation (Mannville Group) in west-central Saskatchewan, Canada. Apectoichnus lignummasticans new ichnospecies is a trace fossil that occurs in a thin coal bed and that was emplaced in an in situ xylic substratum (woodground). The ichnofossil is thin, elongate, unbranched, and straight to gently curved with a circular cross section and uniform diameter. Apectoichnus lignummasticans n. isp. is similar in many respects to modern borings in wood that are produced by marine isopods, e.g., Limnoria lignorum Rathke, 1799, for feeding and refugia. The recognition of Apectoichnus lignummasticans n. isp. in the rock record aligns with the modern observation that fossilized wood-boring assemblages should display higher ichnofossil diversities than commonly reported. Additionally, the stratigraphic occurrence of Apectoichnus lignummasticans n. isp. in association with other evidence of marine deposition reaffirms that certain wood boring morphologies (i.e., ichnotaxa) are useful as indicators of marine transgressions.

UUID: http://zoobank.org/880e722f-8944-42d7-bc38-423cc5a46413

Type
Articles
Copyright
Copyright © 2020, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.W., and Reish, D.J., 1967, The effects of varied dissolved oxygen concentrations and temperature on the wood-boring isopod genus Limnoria: Marine Biology, v. 1, p. 5659.CrossRefGoogle Scholar
Beuck, L., Vertino, A., Stepina, E., Karolczak, M., and Pfannkuche, O., 2007, Skeletal response of Lophelia pertusa (Scleractinia) to bioeroding sponge infestation visualised with micro-computed tomography: Facies, v. 53, p. 157176, doi:10.1007/s10347-006-0094-9.CrossRefGoogle Scholar
Beuck, L., Wisshak, M., Munnecke, A., and Freiwald, A., 2008, A giant boring in a Silurian stromatoporoid analysed by computer tomography: Acta Palaeontologica Polonica, v. 53, p. 149160, doi:10.4202.app.2008.0111.CrossRefGoogle Scholar
Borges, L.M.S., Cragg, S.M., and Busch, S., 2009, A laboratory assay for measuring feeding and mortality of the marine wood borer Limnoria under forced feeding conditions: A basis for a standard test method: International Biodeterioration & Biodegradation, v. 63, p. 289296, doi:10.1016/j.ibiod.2008.10.007.Google Scholar
Borges, L.M.S., Merckelbach, L.M., and Cragg, S.M., 2014, Biogeography of wood-boring crustaceans (Isopoda: Limnoriidae) established in European coastal waters: PLoS ONE, v. 9, p. e109593, doi:10.1371/journal.pone.0109593.Google ScholarPubMed
Bromley, R.G., Pemberton, S.G., and Rahmani, R.A., 1984, A Cretaceous woodground: The Teredolites ichnofacies: Journal of Paleontology, v. 58, p. 488498.Google Scholar
De Geer, C., 1775, Mémoires pour Servir à l'Histoire des Insectes 5: Stockholm, Grefing and Hesselberg, 448 p.Google Scholar
Donovan, S.K., 2018, A new ichnogenus for Teredolites longissimus Kelly and Bromley: Swiss Journal of Palaeontology, v. 137, p. 9598, doi:10.1007/s13358-017-0142-9.CrossRefGoogle Scholar
Donovan, S.K., and Ewin, T.A.M., 2018, Substrate is a poor ichnotaxobase: A new demonstration: Swiss Journal of Palaeontology, v. 137, p. 103107, doi:10.1007/s13358-018-0146-0.CrossRefGoogle Scholar
Donovan, S.K., and Portell, R.W., 2019, Invertebrate borings from the Eocene of Seven Rivers, parish of St. James, western Jamaica: Swiss Journal of Palaeontology, v. 138, p. 277283, doi:10.1007/s13358-019-00190-8.CrossRefGoogle Scholar
Dorgan, K.M., 2015, The biomechanics of burrowing and boring: Journal of Experimental Biology, v. 218, p. 176183, doi:10.1242/jeb.086983.CrossRefGoogle ScholarPubMed
Eltringham, S.K., 1961, The effect of salinity upon the boring activity and survival of Limnoria (Isopoda): Journal of the Marine Biological Association of the United Kingdom, v. 41, p. 785797.CrossRefGoogle Scholar
Eltringham, S.K., 1965, The effect of temperature upon the boring activity and survival of Limnoria (Isopoda): Journal of Applied Ecology, v. 2, p. 149157.CrossRefGoogle Scholar
Fabricius, J.C., 1775, Systema Entomologiae, Sistens Insectorum Classes, Ordines, Genera, Species, Adjectis Synonymis, Locis, Descriptionibus, Observationibus: Flensburg, Germany, Libraria Kortii, 832 p.Google Scholar
Genise, J.F., 1995, Upper Cretaceous trace fossils in permineralized plant remains from Patagonia, Argentina: Ichnos, v. 3, p. 287299.CrossRefGoogle Scholar
Genise, J.F., and Hazeldine, P.L., 1995, A new insect trace fossil in Jurassic wood from Patagonia, Argentina: Ichnos, v. 4, p. 15.10.1080/10420949509380109CrossRefGoogle Scholar
Genise, J.F., Garrouste, R., Nel, P., Grandcolas, P., Maurizot, P., Cluzel, D., Cornette, R., Fabre, A.-C., and Nel, A., 2012, Asthenopodichnium in fossil wood: Different trace makers as indicators of different terrestrial palaeoenvironments: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 365–366, p. 184191, doi:10.1016/j.palaeo.2012.09.025.CrossRefGoogle Scholar
Gingras, M.K., MacEachern, J.A., and Pickerill, R.K., 2004, Modern perspectives on the Teredolites ichnofacies: Observations from Willapa Bay, Washington: Palaios, v. 19, p. 7988, doi:10.1669/0883-1351(2004)019<0079:MPOTTI>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Guo, S., 1991, A Miocene trace fossil of insect from Shanwang Formation in Linqu, Shandong: Acta Palaeontologica Sinica, v. 30, p. 739742.Google Scholar
Holthuis, L.B., 1949, The Isopoda and Tanaidacea of The Netherlands, including the description of a new species of Limnoria: Zoologische Mededelingen Reiksmuseum van Natuurlijke Historie te Leiden, v. 30, p. 163190.Google Scholar
Howard, J.D., 1966, Characteristic trace fossils in Upper Cretaceous sandstones of the Book Cliffs and Wasatch Plateau: Utah Geological and Mineralogical Survey Bulletin, v. 80, p. 3553.Google Scholar
Jarzembowski, E.A., 1990, A boring beetle from the Wealden Sea of the Weald, in Boucot, J., ed., Evolutionary Paleobiology of Behaviour and Coevolution: Amsterdam, Elsevier, p. 373376.Google Scholar
Jones, L.T., 1963, The geographical and vertical distribution of British Limnoria [Crustacea: Isopoda]: Journal of the Marine Biological Association of the United Kingdom, v. 43, p. 589603.10.1017/S0025315400025546CrossRefGoogle Scholar
Karpiński, J.J., 1962, Cast of the brood galleries of fossil beetle of the Scolytidae family from Oligocene/Miocene Sandstone at Osieczów (Lower Silesia): Prace Instytut Geologiczny, v. 30, p. 237239.Google Scholar
Kelly, S.R., and Bromley, R.G., 1984, Ichnological nomenclature of clavate borings: Palaeontology, v. 27, p. 793807.Google Scholar
Ketcham, R.A., and Carlson, W.D., 2001, Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences: Computers & Geosciences, v. 27, p. 381400, doi:10.1016/S0098-3004(00)00116-3.Google Scholar
Kiteley, L.W., and Field, M.E., 1984, Shallow marine depositional environments in the Upper Cretaceous of northern Colorado, in Tillman, R.W., and Siemers, C.T., eds., Siliciclastic Shelf Sediments: Society of Economic Paleontologists and Mineralogists, Special Publication 34, p. 179204.CrossRefGoogle Scholar
Leymerie, A., 1842, Suite de mémoire sur le terrain Crétacé du département de l'Albe: Mémoires de la Société Géologique de France, v. 1, sér. 4, p. 134.Google Scholar
Linck, O., 1949, Fossile Bohrgänge (Anobichnium simile n. g. n. sp.) an einen Keuperholz : Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, v. B 4-6, p. 180185.Google Scholar
Mayoral, E., Santos, A., Vintaned, J.A.G., Wisshak, M., Neumann, C., Uchman, A., and Nel, A., 2020, Bivalve bioerosion in Cretaceous-Neogene amber around the globe, with implications for the ichnogenera Teredolites and Apectoichnus: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 538, p. e109410, doi :10.1016/j.palaeo.2019.109410.CrossRefGoogle Scholar
Menzies, R.J., 1951, A new species of Limnoria (Crustacea: Isopoda) from southern California: Bulletin of the Southern California Academy of Sciences, v. 50, p. 8688.Google Scholar
Menzies, R.J., 1957, The marine borer family Limnoriidae (Crustacea, Isopoda), Part 1, Northern and central North America: Systematics, distribution, and ecology: Bulletin of Marine Science of the Gulf and Caribbean, v. 7, p. 101200.Google Scholar
Menzies, R.J., and Turner, R., 1957, The distribution and importance of marine wood borers in the United States, in Symposium on Wood for Marine Use and its Protection from Marine Organisms: West Conshohocken, Pennsylvania, ASTM International, p. 3-33-19.Google Scholar
Mikuláš, R., and Dvorák, Z., 2002, Borings in xylic tissues of the tree fern Tempskya in the Bohemian Cretaceous Basin, Czech Republic: Zprávy o Geologických Výzkumech, v. 36, p. 129131.Google Scholar
Mikuláš, R., Pek, I., and Zimák, J., 1995, Teredolites clavatus from the Cenomanian near Maletín (Bohemian Cretaceous Basin), Moravia, Czech Republic: Věstník Českého Geologického Ústavu, v. 70, p. 5158.Google Scholar
Morshedian, A., MacEachern, J.A., and Dashtgard, S.E., 2012, Stratigraphic framework for the Lower Cretaceous Upper Mannville Group (Sparky, Waseca, and McLaren alloformations) in the Lloydminster area, west-central Saskatchewan, in Summary of Investigations 2011, Volume 1: [Regina, Saskatchewan,] Saskatchewan Geological Survey, Saskatchewan Ministry of Resources, p. 17.Google Scholar
Muszer, J., and Uglik, M., 2013, Palaeoenvironmental reconstruction of the Upper Viséan Paprotnia Beds (Bardo Unit, Polish Sudetes) deposition on the ichnological and palaeontological investigations: Geological Quarterly, v. 57, p. 365384.Google Scholar
Nicholson, H.A., 1873, Contributions to the study of the errant annelides of the older Palaeozoic rocks: Proceedings of the Royal Society of London, v. 21, p. 288290.Google Scholar
Panos, V., and Skacel, J., 1966, Zur Frage der Entstehung der Steinsaeulen ‘Pobitite Kameni’ und anderer eigenartiger Formen zwischen Varna und Beloslav in Nordost-Bulgarien: Zeitschrift für Geomorphologie, v. 10, p. 105118.Google Scholar
Petrov, A.V., 2013, New ichnotaxon Megascolytinus zherikhini (Coleoptera: Curculionidae: Scolytinae) from Upper Cretaceous deposits of Mongolia: Paleontological Journal, v. 47, p. 597600, doi:10.1134/S0031030113060051.CrossRefGoogle Scholar
Pickerill, R.K., Donovan, S.K., and Portell, R.W., 2003, Teredolites longissimus Kelly & Bromley from the Miocene Grand Bay Formation of Carriacou, the Grenadines, Lesser Antilles: Scripta Geologica, v. 125, p. 19.Google Scholar
Pirrie, D., Marshall, J.D., and Crame, J.A., 1998, Marine high Mg calcite cements in Teredolites-bored fossil wood: Evidence for cool paleoclimates in the Eocene La Meseta Formation, Seymour Island, Antarctica: Palaios, v. 13, p. 276.CrossRefGoogle Scholar
Plint, A.G., and Pickerill, R.K., 1985, Non-marine Teredolites from the middle Eocene of southern England: Lethaia, v. 18, p. 341347.CrossRefGoogle Scholar
Rathke, J., 1799, Observations concerning the natural history of helminths and molluscs: Skrivter af Naturhist-Selskabet (København), v. 5, p. 61148.Google Scholar
Savrda, C.E., 1991, Teredolites, wood substrates, and sea-level dynamics: Geology, v. 19, p. 905908.2.3.CO;2>CrossRefGoogle Scholar
Savrda, C.E., and King, D.T., 1993, Log-ground and Teredolites lagerstatte in a Trangressive Sequence, Upper Cretaceous (Lower Campanian) Mooreville Chalk, central Alabama: Ichnos, v. 3, p. 6977.CrossRefGoogle Scholar
Savrda, C.E., Ozalas, K., Demko, T.H., Huchison, R.A., and Scheiwe, T.D., 1993, Log-grounds and the ichnofossil Teredolites in transgressive deposits of the Clayton Formation (lower Paleocene), western Alabama: Palaios, v. 8, p. 311.10.2307/3515263CrossRefGoogle Scholar
Schlirf, M., 2006, Linkichnus terebrans new ichnogenus et ichnospecies, an insect boring from the Late Triassic of the Germanic Basin, southern Germany: Ichnos, v. 13, p. 277280, doi:10.1080/10420940600843765.CrossRefGoogle Scholar
Schönberg, C.H.L., and Shields, G., 2008, Micro-computed tomography for studies on Entobia: Transparent substrate versus modern technology, in Wisshak, M., and Tapanila, L., eds., Current Developments in Bioerosion (Erlangen Earth Conference Series): Berlin, Springer, p. 147164.10.1007/978-3-540-77598-0_8CrossRefGoogle Scholar
Seilacher, A., 1955, Spuren und Fazies im Unterkambrium, in Schindewolf, O.H., and Seilacher, A., eds., Beiträge zur Kenntnis des Kambriums in der Salt Range (Pakistan): Wiesbaden, Germany, Akademie der Wissenschaften und der Literatur, p. 373399.Google Scholar
Shanley, K.W., McCabe, P.J., and Hettinger, R.D., 1992, Tidal influence in Cretaceous fluvial strata from Utah, USA: A key to sequence stratigraphic interpretation: Sedimentology, v. 39, p. 905930.CrossRefGoogle Scholar
Shipway, J.R., Altamia, M.A., Rosenberg, G., Concepcion, G.P., Haygood, M.G., and Distel, D.L., 2019, A rock-boring and rock-ingesting freshwater bivalve (shipworm) from the Philippines: Proceedings of the Royal Society B, Biological Sciences, v. 286, p. 20190434, doi:101098/rspb.2019.0434.CrossRefGoogle ScholarPubMed
Tapanila, L., 2008, The medium is the message: Imaging a complex microboring (Pyrodendrina cupra igen. n., isp. n.) from the early Paleozoic of Anticosti Island, Canada, in Wisshak, M., and Tapanila, L., eds., Current Developments in Bioerosion (Erlangen Earth Conference Series): Berlin, Springer, p. 123145.CrossRefGoogle Scholar
Tapanila, L., and Roberts, E.M., 2012, The earliest evidence of holometabolan insect pupation in conifer wood: PLoS ONE, v. 7, p. e31668, doi:10.1371/journal.pone.0031668.CrossRefGoogle ScholarPubMed
Thenius, E., 1979, Lebensspuren von Ephemeropteren-Larven aus dem Jung-Tertiär des Wiener Beckens: Annalen Des Naturhistorischen Museums in Wien, v. 82, p. 177188.Google Scholar
Torell, O., 1870, Petrificata suecana formationis cambricae: Acta Universitatis Lundensis, Afdelning Mathematik och Naturvetenskap Arsskrift, v. 6, p. 114.Google Scholar
Walker, M.V., 1938, Evidence of Triassic insects in the Petrified Forest National Monument, Arizona: Proceedings of the United States National Museum, v. 85, p. 137141.CrossRefGoogle Scholar
Wildenschild, D., and Sheppard, A.P., 2013, X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems: Advances in Water Resources, v. 51, p. 217246, doi:10.1016/j.advwatres.2012.07.018.CrossRefGoogle Scholar
Wisshak, M., Knaust, D., and Bertling, M., 2019, Bioerosion ichnotaxa: Review and annotated list: Facies, v. 65, p. 24, doi:10.1007/s10347-019-0561-8.Google Scholar
Zenker, J.C., 1836, Historisch-Topographisches Taschenbuch von Jena und Seiner Umgebung Besonders in Seiner Naturwissenschaftlicher und Medicinischer Bezieh: Jena, Germany, Wackenholder, 338 p.Google Scholar
Zonneveld, J.P., Bartels, W.S., Gunnell, G.F., and McHugh, L.P., 2015, Borings in early Eocene turtle shell from the Wasatch Formation, South Pass, Wyoming: Journal of Paleontology, v. 89, p. 802820, doi:10.1017/jpa.2015.61.CrossRefGoogle Scholar