Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T04:19:45.133Z Has data issue: false hasContentIssue false

Origin of euconodont elements

Published online by Cambridge University Press:  20 May 2016

Hubert Szaniawski
Affiliation:
Instytut Paleobiologii PAN, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
Stefan Bengtson
Affiliation:
Institute of Palaeontology, Box 558, S-751 22 Uppsala, Sweden

Abstract

Primitive euconodont elements from the Upper Cambrian of Sweden are investigated histologically and compared with co-occurring elements of paraconodonts. The proposed close relationship between the two groups is confirmed. Typical euconodont and paraconodont elements are bridged by intermediate forms. The ontogenetic development of the early euconodont elements shows striking similarities to the evolutionary development from paraconodonts to euconodonts, suggesting that evolution generally followed a peramorphic pattern (“recapitulation”). The conodont crown originated through extension of the growth lamellae around the whole element, accompanied by stronger mineralization. The first denticulation in Proconodontus arose when a jagged posterior edge in juvenile specimens was enhanced by the subsequent deposition of growth lamellae, a process comparable to the regeneration of broken tips. The most primitive euconodont elements probably erupted from the epithelium earlier in ontogeny than in more advanced forms. After the appearance of the phosphatic crown, conodont elements underwent a very rapid morphological differentiation. Cordylodus may have arisen from Proconodontus serratus.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, R. J. 1987. Conodont palaeobiology: a historical review, p. 1134. In Aldridge, R. J. (ed.), Palaeobiology of Conodonts. Ellis Horwood, Chichester.Google Scholar
Aldridge, R. J., Briggs, D. E. G., Clarkson, E. N. K., and Smith, M. P. 1986. The affinities of conodonts—new evidence from the Carboniferous of Edinburgh, Scotland. Lethaia, 19:279291.CrossRefGoogle Scholar
Andres, D. 1981. Beziehungen zwischen Kambrischen Conodonten und Euconodonten (Vorläufige Mitteilung). Berliner Geowissenschaftliche Abhandlungen (A), 32:1931.Google Scholar
Andres, D. 1988. Strukturen, Apparate und Phylogenie primitiver Conodonten. Palaeontographica A, 200:105152.Google Scholar
Bagnoli, G., Barnes, C. R., and Stevens, R. K. 1987. Lower Ordovician (Tremadocian) conodonts from Broom Point and Green Point, western Newfoundland. Estratto dal Bolletino della Società Italiana, 25:145158.Google Scholar
Barnes, C. R., Sass, D. B., and Poplawski, M. L. S. 1973. Conodont ultrastructure: the family Panderodontidae. Life Sciences Contribution, Royal Ontario Museum, 90:136.Google Scholar
Bengtson, S. 1976. The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function. Lethaia, 9:185206.CrossRefGoogle Scholar
Bengtson, S. 1977. Aspects of problematic fossils in the early Palaeozoic. Acta Universitatis Upsaliensis. Abstracts of Uppsala Dissertations from the Faculty of Science, 415:171.Google Scholar
Bengtson, S. 1983a. The early history of the Conodonta. Fossils and Strata, 15:519.Google Scholar
Bengtson, S. 1983b. A functional model for the conodont apparatus. Lethaia, 16:38.CrossRefGoogle Scholar
Briggs, D. E. G., Clarkson, E. N. K., and Aldridge, R. J. 1983. The conodont animal. Lethaia, 16:114.CrossRefGoogle Scholar
Carls, P. C. 1977. Could conodonts be lost and replaced? Neues Jahrbuch für Geologie und Paläontologie, 155:1864.Google Scholar
Clark, E. L., Sweet, W. C., Bergström, S. M., Klapper, G., Austin, R. L., Rhodes, F. H. T., Müller, K. J., Ziegler, W., Lindström, M., Miller, J. F., and Harris, A. G. 1981. Conodonta, p. W1W202. In Robison, R. A. (ed.), Treatise on Invertebrate Paleontology, Pt. W, Miscellanea, Supplement 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Dzik, J. 1976. Remarks on the evolution of Ordovician conodonts. Acta Palaeontologica Polonica, 21:395455.Google Scholar
Dzik, J. 1986. Chordate affinities of the conodonts, p. 240254. In Hoffman, A. and Nitecki, M. H. (eds.), Problematic Fossil Taxa. Oxford Monographs on Geology and Geophysics, 5.Google Scholar
Gross, W. 1957. Über die Basis der Conodonten. Paläontologische Zeitschrift, 31:7891.CrossRefGoogle Scholar
Hass, W. H., Häntschel, W., Fisher, D. W., Howell, B. F., Rhodes, F. H. T., Müller, K. J., and Moore, R. C. 1962. Conodonts, conoidal shells of uncertain affinities, worms, trace fossils and problematica, p. W3W69. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. W, Miscellanea. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Jeppsson, L. 1979. Conodont element function. Lethaia, 12:153171.CrossRefGoogle Scholar
Jeppsson, L., Fredholm, D., and Mattiasson, B. 1985. Acetic acid and phosphatic fossils—a warning. Journal of Paleontology, 59:952956.Google Scholar
Kaljo, D., Borovko, N., Heinsalu, H., Khazanovich, K., Mens, K., Popov, L., Sergeyeva, S., Sobolevskaya, R., and Viira, V. 1986. The Cambrian–Ordovician boundary in the Baltic–Ladoga Clint area (North Estonia and Leningrad region, USSR). Eesti NSV Teaduste Akadeemia Toimetised, Geoloogia, 35:97108.Google Scholar
Krejsa, R. J., Bringas, P., and Slavkin, H. C. 1990. A neontological interpretation of conodont elements based on agnathan cyclostome tooth structure, function, and development. Lethaia, 23:359378.Google Scholar
Lindström, M. 1964. Conodonts. Elsevier, Amsterdam, 196 p.Google Scholar
McNamara, K. J. 1986. A guide to the nomenclature of heterochrony. Journal of Paleontology, 60:413.CrossRefGoogle Scholar
Mikulic, D. G., Briggs, D. E. G., and Kluessendorf, J. 1985a. A new, exceptionally preserved biota from the Lower Silurian of Wisconsin, USA. Philosophical Transactions of the Royal Society, London, B311:7585.Google Scholar
Mikulic, D. G., Briggs, D. E. G., and Kluessendorf, J. 1985b. A Silurian soft-bodied fauna. Science, 228:715717.CrossRefGoogle Scholar
Miller, J. F. 1969. Conodont fauna from the Notch Peak Limestone (Cambro–Ordovician), House Range, Utah. Journal of Paleontology, 43:413439.Google Scholar
Miller, J. F. 1976. An evolutionary transition between paraconodonts and conodontophorids from the Wilberns Formation (Upper Franconian) of central Texas. Geological Society of America, Abstracts with Programs, 8:498.Google Scholar
Miller, J. F. 1980. Taxonomic revisions of some Upper Cambrian and Lower Ordovician conodonts with comments on their evolution. The University of Kansas Paleontological Contributions, 99:139.Google Scholar
Miller, J. F. 1984. Cambrian and earliest Ordovician evolution, biofacies and provincialism. Geological Society of America, Special Paper, 196:4368.Google Scholar
Müller, K. J. 1959. Kambrische Conodonten. Zeitschrift der Deutschen Geologischen Gesellschaft, 111:434485.CrossRefGoogle Scholar
Müller, K. J. 1962. Supplement to systematics of conodonts, p. W246W249. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. W, Miscellanea. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Müller, K. J., and Hinz, I. 1991. Upper Cambrian conodonts from Sweden. Fossils and Strata, 28:1153.CrossRefGoogle Scholar
Müller, K. J., and Nogami, Y. 1971. Über den Feinbau der Conodonten. Memoirs of the Faculty of Science, University of Kyoto, Series of Geology and Mineralogy, 38:187.Google Scholar
Nicoll, R. S. 1977. Conodont apparatuses in an Upper Devonian palaeoniscoid fish from the Canning Basin, Western Australia. BMR Journal of Australian Geology and Geophysics, 2:217228.Google Scholar
Nogami, Y. 1967. Kambrische Conodonten von China. Teil 2. Conodonten aus den hoch oberkambrischen Yencho-Schichten. Memoirs of the College of Science, University of Kyoto, B, 33:211219.Google Scholar
Pander, C. H. 1856. Monographie der fossilen Fische des Silurischen Systems der Russisch-Baltischen Gouvernements. Königliche Akademie der Wissenschaften, St. Petersburg, 91 p.Google Scholar
Pietzner, H., Vahl, J., Werner, H., and Ziegler, W. 1968. Zur chemischen Zusammensetzung und Mikromorphologie der Conodonten. Palaeontographica, Abt. A, 128(4–6):115152.Google Scholar
Sweet, W. C. 1988. The Conodonta. Oxford Monographs on Geology and Geophysics, 10:1212.Google Scholar
Szaniawski, H. 1980. Fused clusters of paraconodonts, p. 211. In Schönlaub, H. P. (ed.), Guidebook and Abstracts, Second European Conodont Symposium (ECOS II). Abhandlungen der Geologischen Bundesanstalt, 35.Google Scholar
Szaniawski, H. 1982. Chaetognath grasping spines recognized among Cambrian protoconodonts. Journal of Paleontology, 56:806810.Google Scholar
Szaniawski, H. 1983. Structure of protoconodont elements. Fossils and Strata, 15:2127.CrossRefGoogle Scholar
Szaniawski, H. 1987. Preliminary structural comparisons of protoconodont, paraconodont, and euconodont elements, p. 3547. In Aldridge, R. J. (ed.), Palaeobiology of Conodonts. Ellis Horwood, Chichester.Google Scholar
Szaniawski, H., and Bengtson, S. 1988. Formation of the first euconodont elements, p. 256257. In Ziegler, W. (ed.), First International Senckenberg Conference and Fifth European Conodont Symposium (ECOS V), Contributions I, Part 2, Abstracts of Meetings. Courier Forschungsinstitut Senckenberg, 102.Google Scholar
Viira, V., Sergeeva, S., and Popov, L. 1987. Earliest representatives of the genus Cordylodus (Conodonta) from Cambro-Ordovician boundary beds of North Estonia and Leningrad region. Eesti NSV Teaduste Akadeemia Toimetised, Geoloogia, 36:145153.Google Scholar
Westergård, A. H. 1922. Sveriges Olenidskiffer. Sveriges Geologiska Undersökning, Serie C, 18:1205.Google Scholar