Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T11:08:11.726Z Has data issue: false hasContentIssue false

Patterns of crystallographic axis orientation in blastoid skeletal elements

Published online by Cambridge University Press:  20 May 2016

Brian E. Bodenbender*
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor 48109-1063

Abstract

It is well known that echinoderm skeletal elements behave optically as single calcite crystals, but one implication of this observation, that skeletal units have crystallographic axes with characterizable orientations, has received little attention. This paper examines patterns of crystallographic axis orientations in 43 blastoid species and assesses their usefulness to the study of homology among echinoderm skeletal elements, phylogeny both within blastoids and at higher taxonomic levels, and biomineralization processes.

Calcite decoration and optical goniometry techniques reveal intraspecific and interspecific patterns of variation in the orientations of c and a crystallographic axes in the three major sets of blastoid thecal plates. Within species, basal, radial, and deltoid c axes all show consistent orientations, clustering near the meridional plane that bisects each plate. In contrast, a axes of most plates have random orientations, although for a few plates a axes are clustered rather than random. While c axes from different species all fall about the meridional plane bisecting each plate, inclinations within this plane vary, so crystallographic data can provide new characters for phylogenetic analysis.

In assessing homologies among deltoid plates, axes of posterior deltoids show little correspondence with those of regular deltoids, possibly suggesting a nonhomologous origin. Superdeltoids and epideltoids have commingled c axis orientations and may be homologues.

Consistent c axes within species suggest molecular or cellular control of biomineralization during development, but the occurrence of both random and constrained a axes, depending on the plate examined, implies heterogeneities in this control affecting different plates on the theca.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addadi, L., and Weiner, S. 1989. Stereochemical and structural relations between macromolecules and crystals in biomineralization, p. 133156. In Mann, S., Webb, J., and Williams, R. J. P. (eds.), Biomineralization: Chemical and Biochemical Perspectives. VCH Publishers, New York.Google Scholar
Beaver, H. H. 1967a. Morphology, p. S300S344. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part S, Echinodermata 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Beaver, H. H. 1967b. Ontogeny, p. S352S356. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part S, Echinodermata 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Bodenbender, B. E. 1990. Potential of skeletal crystallography as a phylogenetic tool in edrioasteroids. Geological Society of America Abstracts with Programs, 22(7):A267.Google Scholar
Bodenbender, B. E. 1994. Skeletal crystallography in cladistic and stratocladistic investigations of blastoid phylogeny. Unpublished Ph.D. dissertation, University of Michigan, Ann Arbor, 287 p.Google Scholar
Bodenbender, B. E. 1995 (submitted). Morphological, crystallographic, and stratigraphic data in cladistic analyses of blastoid phylogeny. Contributions from the Museum of Paleontology The University of Michigan, 29:201257.Google Scholar
Breimer, A., and Macurda, D. B. Jr. 1972. The phylogeny of the fissiculate blastoids. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Natuurkunde Eerste Reeks, 26:1390.Google Scholar
Brett, C. E., Frest, T. J., Sprinkle, J., and Clement, C. R. 1983. Coronoidea: a new class of blastozoan echinoderms based on taxonomic reevaluation of Stephanocrinus. Journal of Paleontology, 57:627651.Google Scholar
Cline, L. M. 1936. Blastoids of the Osage group, Mississippian: Part I. The genus Schizoblastus. Journal of Paleontology, 10:260281.Google Scholar
Croneis, C., and Geis, H. L. 1940. Microscopic Pelmatozoa: Part 1, ontogeny of the Blastoidea. Journal of Paleontology, 14:345355.Google Scholar
Didymus, J. M., Mann, S., Sanderson, N. P., Oliver, P., Heywood, B. R., and Aso-Samper, E. J. 1991. Modelling biomineralization: studies on the morphology of synthetic calcite, p. 267271. In Suga, S. and Nakahara, H. (eds.), Mechanisms and Phylogeny of Mineralization in Biological Systems. Springer-Verlag, New York.Google Scholar
Dillaman, R. M., and Hart, H. V. 1981. X-ray evaluation of a SEM technique for determining the crystallography of echinoid skeletons. Scanning Electron Microscopy, 3:313320.Google Scholar
Donnay, G., and Pawson, D. L. 1969. X-ray diffraction studies of echinoderm plates. Science, 166:11471150.Google Scholar
Donovan, S. K., and Paul, C. R. C. 1985. Coronate echinoderms from the Lower Paleozoic of Britain. Palaeontology, 28:527543.Google Scholar
Emlet, R.B. 1985. Crystal axes in Recent and fossil echinoids indicate trophic mode in larval development. Science, 230:937940.Google Scholar
Emlet, R.B. 1988. Larval form and metamorphosis of a “primitive” sea urchin, Eucidaris thouarsi (Echinodermata: Echinoidea: Cidaroida), with implications for developmental and phylogenetic studies. Biological Bulletin, 174:419.Google Scholar
Emlet, R.B. 1989. Apical skeletons of sea urchins (Echinodermata: Echinoidea): two methods for inferring mode of larval development. Paleobiology, 15:223254.Google Scholar
Fisher, D. C. 1982. Stylophoran skeletal crystallography: testing the calcichordate theory of vertebrate origins. Geological Society of America Abstracts with Programs, 14(7):488.Google Scholar
Fisher, D. C., and Bodenbender, B. E. 1993. CalcAxes: a program for computing calcite crystallographic axis orientations. Contributions from the Museum of Paleontology The University of Michigan, 28:327363.Google Scholar
Fisher, D. C., and Cox, R. S. 1987. Phylogenetic applications of echinoderm skeletal crystallography. Geological Society of America Abstracts with Programs, 19(7):663.Google Scholar
Fisher, D. C., and Cox, R. S. 1988. Application of skeletal crystallography to phylogenetic inference in fossil echinoderms, p. 797. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L. (eds.), Echinoderm Biology: Proceedings of the Sixth International Echinoderm Conference. A. A. Balkema, Rotterdam.Google Scholar
Horowitz, A. S., Able, S., and Strimple, H. L. 1986. Abnormalities in Pentremites Say (Blastoidea) from the Pella Formation (Upper Mississippian) of Iowa. Journal of Paleontology, 60:390399.Google Scholar
Irving, E. 1964. Paleomagnetism and Its Application to Geological and Geophysical Problems. John Wiley and Sons, New York, 399 p.Google Scholar
Jackson, R. T. 1912. Phylogeny of the Echini, with a revision of Paleozoic species. Memoirs of the Boston Society of Natural History, 7, 491 p.Google Scholar
Joysey, K. A., and Breimer, A. 1963. The anatomical structure and systematic position of Pentablastus (Blastoidea) from the Carboniferous of Spain. Palaeontology, 6:471490.Google Scholar
Kästle, B. 1982. Orientierung der a-Achsen im Kalzit von Crinoiden-Stielgliedern und-Armen. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 8:491500.Google Scholar
Kirchner, G. 1929. Die Optik des Crinoidenskelettes. Zoologische Jahrbucher. Abteilung für Allgemeine Zoologie und Physiologie der Tiere, Band 46, Heft 3:413464.Google Scholar
Klein, C., and Hurlbut, C. S. Jr. 1985. Manual of Mineralogy. John Wiley and Sons, New York, 596 p.Google Scholar
Lucas, G. 1953. Étude, au microscope polarisant, des hydrospires des blastoïdes, p. 635637. In Piveteau, J. (ed.), Traité de Paléontologie, Volume 3. Masson et Compagnie, Paris.Google Scholar
Macurda, D. B. Jr. 1967. Development and hydrodynamics of blastoids, p. S356S381. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part S, Echinodermata 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Macurda, D. B. Jr. 1980. Abnormalities of the Carboniferous blastoid Pentremites. Journal of Paleontology, 54:11551162.Google Scholar
Macurda, D. B. Jr. 1983. Systematics of the fissiculate Blastoidea. Papers on Paleontology, Museum of Paleontology, University of Michigan, Number 22, 291 p.Google Scholar
Mann, S. 1988. Molecular recognition in biomineralization. Nature, 332:119124.Google Scholar
Mann, S. 1989. Crystallochemical strategies in biomineralization, p. 3562. In Mann, S., Webb, J., and Williams, R. J. P. (eds.), Biomineralization: Chemical and Biochemical Perspectives. VCH Publishers, New York.Google Scholar
Mann, S., Heywood, B. R., Rajam, S., and Birchall, J.D. 1988. Controlled crystallization of CaCO3 under stearic acid monolayers. Nature, 334:692695.Google Scholar
Mann, S., Heywood, B. R., Rajam, S., and Wade, V. J. 1991. Molecular recognition in biomineralization, p. 4755. In Suga, S. and Nakahara, H. (eds.), Mechanisms and Phylogeny of Mineralization in Biological Systems. Springer-Verlag, New York.Google Scholar
Mann, S., Archibald, D. D., Didymus, J. M., Douglas, T., Heywood, B. R., Meldrum, F. C., and Reeves, N. J. 1993. Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthesis. Science, 261:12861292.Google Scholar
Moore, R. C. 1940. Early growth stages of Carboniferous microcrinoids and blastoids. Journal of Paleontology, 14:572583.Google Scholar
Nissen, H.-U. 1969. Crystal orientation and plate structure in echinoid skeletal units. Science, 166:11501152.Google Scholar
Okazaki, K. 1960. Skeleton formation of sea urchin larvae. Embryologia, 5:283320.Google Scholar
Okazaki, K., and Inoué, S. 1976. Crystal property of the larval sea urchin spicule. Development Growth and Differentiation, 18:413434.Google Scholar
Okazaki, K., Dillaman, R. M., and Wilbur, K. M. 1981. Crystalline axes of the spine and test of the sea urchin Strongylocentrotus purpuratus: determination by crystal etching and decoration. Biological Bulletin, 161:402415.CrossRefGoogle Scholar
Paul, C. R. C., and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews, 59:443481.Google Scholar
Raup, D. M. 1959. Crystallography of echinoid calcite. Journal of Geology, 67:661674.Google Scholar
Raup, D. M. 1960. Ontogenetic variation in the crystallography of echinoid calcite. Journal of Paleontology, 34:10411050.Google Scholar
Raup, D. M. 1962a. The phylogeny of calcite crystallography in echinoids. Journal of Paleontology, 36:793810.Google Scholar
Raup, D. M. 1962b. Crystallographic data in echinoderm classification. Systematic Zoology, 11:97108.Google Scholar
Raup, D. M. 1965. Crystal orientations in the echinoid apical system. Journal of Paleontology, 39:934951.Google Scholar
Raup, D. M. 1966a. Crystallographic data for echinoid coronal plates. Journal of Paleontology, 40:555568.Google Scholar
Raup, D. M. 1966b. The endoskeleton, p. 379395. In Boolootian, R. A. (ed.), Physiology of Echinodermata. Interscience Publishers, New York.Google Scholar
Raup, D. M., and Swan, E. F. 1967. Crystal orientation in the apical plates of aberrant echinoids. Biological Bulletin, 133:618629.Google Scholar
Smith, A. B. 1990. Biomineralization in echinoderms, p. 413443. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Volume 1. Van Nostrand Reinhold, New York.Google Scholar
Smith, A. B. 1994. Systematics and the Fossil Record. Blackwell Scientific Publications, London, 223 p.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry. W. H. Freeman, San Francisco, 859 p.Google Scholar
Sprinkle, J. 1980. Origin of blastoids: new look at an old problem. Geological Society of America Abstracts with Programs, 12(7):528.Google Scholar
Tarling, D. H. 1971. Principles and Applications of Palaeomagnetism. Chapman and Hall, London, 164 p.Google Scholar
Tsipursky, S. J., and Buseck, P. R. 1993. Structure of magnesian calcite from sea urchins. American Mineralogist, 78:775781.Google Scholar
Watson, G. S. 1966. The statistics of orientation data. Journal of Geology, 74:786797.Google Scholar
West, C. D. 1937. Note on the crystallography of the echinoderm skeleton. Journal of Paleontology, 11:458459.Google Scholar
Williams, R. J. P. 1989. The functional forms of biominerals, p. 134. In Mann, S., Webb, J., and Williams, R. J. P. (eds.), Biomineralization: Chemical and Biochemical Perspectives. VCH Publishers, New York.Google Scholar
Wolpert, L., and Gustafson, T. 1961. Studies on the cellular basis of morphogenesis of the sea urchin embryo: development of the skeletal pattern. Experimental Cell Research, 25:311325.Google Scholar