Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T03:23:32.331Z Has data issue: false hasContentIssue false

Phosphatized acanthomorphic acritarchs and related microfossils from the Ediacaran Doushantuo Formation at Weng'an (South China) and their implications for biostratigraphic correlation

Published online by Cambridge University Press:  14 July 2015

Shuhai Xiao
Affiliation:
Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
Chuanming Zhou
Affiliation:
State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China
Pengju Liu
Affiliation:
Institute of Geology, Chinese Academy of Geological Science, Beijing 100037, China
Dan Wang
Affiliation:
State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China
Xunlai Yuan
Affiliation:
State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China

Abstract

The Doushantuo Formation at Weng'an in Guizhou Province, South China, is best known for animal embryo-like microfossils preserved in phosphorites. However, this unit also contains a diverse assemblage of three-dimensionally phosphatized acanthomorphic acritarchs, which are useful in the biostratigraphic subdivision and correlation of the lower–middle Ediacaran System. These acritarchs can be studied using both thin sectioning and acid maceration techniques, thus have the potential to resolve taxonomic inconsistencies between acritarchs preserved in cherts and shales. This paper presents a systematic treatment of acanthomorphs (and related spheroidal microfossils) from the Doushantuo Formation at Weng'an. More than 40 distinct species are described, including the following new species: Asterocapsoides robustus n. sp., Knollisphaeridium? bifurcatum n. sp., Megasphaera cymbala n. sp., Megasphaera patella n. sp., Megasphaera puncticulosa n. sp., Mengeosphaera eccentrica n. gen. n. sp., Papillomembrana boletiformis n. sp., Sinosphaera variabilis n. sp., Tanarium victor n. sp., Tianzhushania rara n. sp., Variomargosphaeridium gracile n. sp., and Weissiella brevis n. sp. The Weng'an microfossil assemblage is dominated by Megasphaera and Mengeosphaera but shares some taxa that are characteristic of the Tianzhushania spinosa biozone and the Tanarium conoideumHocosphaeridium scaberfaciumHocosphaeridium anozos biozone recognized in the Yangtze Gorges area. It may represent a transitional assemblage between these two biozones. The Weng'an microfossil assemblage also shares some elements with Ediacaran acanthomorph assemblages from Australia, Siberia, and East European Platform, indicating at least partial biostratigraphic overlap with those assemblages. Among the taxa described here, T. spinosa and H. anozos emerges as easily recognizable and widely distributed acanthomorph species whose first appearance may be used to define acanthomorph biozones for regional and global biostratigraphic correlation of lower–middle Ediacaran successions.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Awramik, S. M., McMenamin, D. S., Yin, C., Zhao, Z., Ding, Q., and Zhang, S. 1985. Prokaryotic and eukaryotic microfossils from a Proterozoic/Phanerozoic transition in China. Nature, 315:655658.Google Scholar
Bailey, J. V., Joye, S. B., Kalanetra, K. M., Flood, B. E., and Corsetti, F. A. 2007. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature, 445:198201.Google Scholar
Barfod, G. H., Albaréde, F., Knoll, A. H., Xiao, S., Télouk, P., Frei, R., and Baker, J. 2002. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth and Planetary Science Letters, 201:203212.Google Scholar
Bengtson, S. and Budd, G. 2004. Comment on “Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian”. Science, 306:1290a1291a.Google Scholar
Bengtson, S., Cunningham, J. A., Yin, C., and Donoghue, P. C. J. 2012. A merciful death for the “earliest bilaterian,” Vernanimalcula . Evolution and Development, 14:421427.Google Scholar
Butterfield, N. J., Knoll, A. H., and Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34:184.Google Scholar
Chen, D., Dong, W., Zhu, B., and Chen, X. P. 2004a. Pb-Pb ages of Neoproterozoic Doushantuo phosphorites in South China: Constraints on early metazoan evolution and glaciation events. Precambrian Research, 132:123132.Google Scholar
Chen, J.-Y. 2004. The Dawn of Animal World. Jiangsu Science and Technology Press, Nanjing.Google Scholar
Chen, J.-Y., Bottjer, D. J., Davidson, E. H., Li, G., Gao, F., Cameron, R. A., Hadfield, M. G., Xian, D.-C., Tafforeau, P., Jia, Q.-J., Sugiyama, H., and Tang, R. 2009a. Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: Phylogenetic diversity and evolutionary implications. Precambrian Research, 173:191200.Google Scholar
Chen, J.-Y., Bottjer, D. J., Li, G., Hadfield, M. G., Gao, F., Cameron, A. R., Zhang, C.-Y., Xian, D.-C., Tafforeau, P., Liao, X., and Yin, Z.-J. 2009b. Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng'an, Guizhou, China. Proceedings of the National Academy of Sciences, U.S.A., 106:1905619060.Google Scholar
Chen, J.-Y., Bottjer, D. J., Oliveri, P., Dornbos, S. Q., Gao, F., Ruffins, S., Chi, H., Li, C.-W., and Davidson, E. H. 2004b. Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science, 305:218222.Google Scholar
Chen, J., Oliveri, P., Gao, F., Dornbos, S. Q., Li, C.-W., Bottjer, D. J., and Davidson, E. H. 2002. Precambrian animal life: Probable developmental and adult cnidarian forms from southwest China. Developmental Biology, 248:182196.Google Scholar
Chen, J., Oliveri, P., Li, C.-W., Zhou, G.-Q., Gao, F., Hagadorn, J. W., Peterson, K. J., and Davidson, E. H. 2000. Precambrian animal diversity: Putative phosphatized embryos from the Doushantuo Formation of China. Proceedings of the National Academy of Sciences, U.S.A., 97:44574462.Google Scholar
Chen, M. and Liu, K. 1986. The geological significance of newly discovered microfossils from the upper Sinian (Doushantuo age) phosphorites. Scientia Geologica Sinica, 1:4653.Google Scholar
Chen, S., Yin, C., Liu, P., Gao, L., Tang, F., and Wang, Z. 2010. Microfossil assemblage from chert nodules of the Ediacaran Doushantuo Formation in Zhangcunping, Northern Yichang, South China. Acta Geologica Sinica (Chinese Edition), 84:7077.Google Scholar
Cohen, P. A., Knoll, A. H., and Kodner, R. B. 2009. Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proceeding of the National Academy of Sciences, U.S.A., 106:65196524.Google Scholar
Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308:9598.Google Scholar
Cunningham, J. A., Thomas, C.-W., Bengtson, S., Kearns, S. L., Xiao, S., Marone, F., Stampanoni, M., and Donoghue, P. C. J. 2012. Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians. Proceedings of the Royal Society B (Biological Sciences), 279:23692376.Google Scholar
Deflandre, G. 1954. Systematique des Hystrichosphaerides: sur l'Acception de Genre Cymatiosphaera O. Wentzel. Comptes Rendus, Société géologique de France, 12:257259.Google Scholar
Dornbos, S. Q., Bottjer, D. J., Chen, J. Y., Gao, F., Oliveri, P., and Li, C. W. 2006. Environmental controls on the taphonomy of phosphatized animals and animal embryos from the Neoproterozoic Doushantuo Formation, southwest China. Palaios, 21:314.Google Scholar
Dunthorn, M., Lipps, J. H., and Stoeck, T. 2010. Reassessment of the putative ciliate fossils Eotintinnopsis, Wujiangella, and Yonyangella from the Neoproterozoic Doushantuo Formation in China. Acta Protozoologica, 49:139144.Google Scholar
Faizullin, M. S. 1998. New data on Baikalian microfossils of the Patom Upland. Russian Geology and Geophysics, 3:328337. (In Russian) Google Scholar
Golubkova, E. Y., Raevskaya, E. G., and Kuznetsov, A. B. 2010. Lower Vendian microfossil assemblages of East Siberia: Significance for solving regional stratigraphic problems. Stratigraphy and Geological Correlation, 18:353375.Google Scholar
Grey, K. 2005. Ediacaran palynology of Australia. Memoirs of the Association of Australasian Palaeontologists, 31:1439.Google Scholar
Grey, K. and Calver, C. R. 2007. Correlating the Ediacaran of Australia, p. 115135. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. The Geological Society of London Special Publication 286, London.Google Scholar
Grey, K., Walter, M. R., and Calver, C. R. 2003. Neoproterozoic biotic diversification: snowball Earth or aftermath of the Acraman impact? Geology, 31:459462.Google Scholar
Grey, K. and Willman, S. 2009. Taphonomy of Ediacaran acritarchs from Australia: Significance for taxonomy and biostratigraphy. Palaios, 24:239256.Google Scholar
Hermann, T. N. 1990. Organic World Billion Year Ago. Nauka, Leningrad.Google Scholar
Hoffman, P. F. and Li, Z.-X. 2009. A palaeogeographic context for Neoproterozoic glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 277:158172.Google Scholar
Huldtgren, T., Cunningham, J. A., Yin, C., Stampanoni, M., Marone, F., Donoghue, P. C. J., and Bengtson, S. 2011. Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists. Science, 334:16961699.Google Scholar
Jiang, G., Kaufman, A. J., Christie-Blick, N., Zhang, S., and Wu, H. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters, 261:303320.Google Scholar
Jiang, G., Shi, X., Zhang, S., Wang, Y., and Xiao, S. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 19:831849.Google Scholar
Knoll, A. H. 1984. Microbiotas of the late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard. Journal of Paleontology, 58:131162.Google Scholar
Knoll, A. H. 1992. Microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, western Svalbard. Palaeontology, 35:751774.Google Scholar
Knoll, A. H. 2011. The multiple origins of complex multicellularity. Annual Review of Earth and Planetary Sciences, 39:217239.Google Scholar
Knoll, A. H., Javaux, E. J., Hewitt, D., and Cohen, P. 2006a. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society of London B Biological Sciences, 361:10231038.Google Scholar
Knoll, A. H., Walter, M. R., Narbonne, G. M., and Christie-Blick, N. 2004. A new period for the geologic time scale. Science, 305:621622.Google Scholar
Knoll, A. H., Walter, M. R., Narbonne, G. M., and Christie-Blick, N. 2006b. The Ediacaran Period: A new addition to the geologic time scale. Lethaia, 39:1330.Google Scholar
Kolosova, S. P. 1991. Pozdnedokembriyskie shipovatie mikrofossilii vostoka sibirkoy platformi [Late Precambrian acanthomorphic acritarchs from the eastern Siberian Platform]. Algologiya [Algologia], 1:5359.Google Scholar
Li, C.-W., Chen, J.-Y., and Hua, T.-E. 1998. Precambrian sponges with cellular structures. Science, 279:879882.Google Scholar
Li, C. W., Chen, J. Y., Lipps, J. H., Gao, F., Chi, H. M., and Wu, H. J. 2007. Ciliated protozoans from the Precambrian Doushantuo Formation, Wengan, South China, p. 151156. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publications 286, London.Google Scholar
Liu, P., Xiao, S., Yin, C., Zhou, C., Gao, L., and Tang, F. 2008. Systematic description and phylogenetic affinity of tubular microfossils from the Ediacaran Doushantuo Formation at Weng'an, South China. Palaeontology, 51:339366.Google Scholar
Liu, P. and Yin, C. 2005. New data of phosphatized acritarchs from the Ediacaran Doushantuo Formation at Weng'an, Guizhou Province, southwest China. Acta Geologica Sinica (English Edition), 79:575581.Google Scholar
Liu, P., Xiao, S., Yin, C., Chen, S., Zhou, C., and Li, M. 2014. Ediacaran acanthomorphic acritarchs and other microfossils from chert nodules of the upper Doushantuo Formation in the Yangtze Gorges area, South China. Paleontological Society Memoir 72:1139.Google Scholar
Liu, P., Yin, C., Chen, S., Li, M., Gao, L., and Tang, F. 2012a. Discussion on the chronostratigraphic subdivision of the Ediacaran (Sinian) in the Yangtze Gorges area, South China. Acta Geologica Sinica (Chinese Edition), 86:849866.Google Scholar
Liu, P., Yin, C., Chen, S., Tang, F., and Gao, L. 2010. Affinity, distribution and stratigraphic signification of tubular microfossils from Ediacaran Doushantuo Formation in South China. Acta Palaeontologica Sinica, 49:308324.Google Scholar
Liu, P., Yin, C., Chen, S., Tang, F., and Gao, L. 2013. The biostratigraphic succession of acanthomorphic acritarchs of the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China and its biostratigraphic correlation with Australia. Precambrian Research, 225:2943.Google Scholar
Liu, P., Yin, C., Gao, L., Tang, F., and Chen, S. 2009. New material of microfossils from the Ediacaran Doushantuo Formation in the Zhangcunping area, Yichang, Hubei Province and its zircon SHRIMP U-Pb age. Chinese Science Bulletin, 54:10581064.Google Scholar
Liu, P., Yin, C., Chen, S., Tang, F., and Gao, L. 2012b. Discovery of Ceratosphaeridium (Acritarcha) from the Ediacaran Doushantuo Formation in Yangtze Gorges, South China and its biostratigraphic implication. Bulletin of Geosciences, 87:195200.Google Scholar
McFadden, K. A., Huang, J., Chu, X., Jiang, G., Kaufman, A. J., Zhou, C., Yuan, X., and Xiao, S. 2008. Pulsed oxygenation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, U.S.A., 105:31973202.Google Scholar
McFadden, K. A., Xiao, S., Zhou, C., and Kowalewski, M. 2009. Quantitative evaluation of the biostratigraphic distribution of acanthomorphic acritarchs in the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China. Precambrian Research, 173:170190.Google Scholar
Moczydłowska, M. 2005. Taxonomic review of some Ediacaran acritarchs from the Siberian Platform. Precambrian Research, 136:283307.Google Scholar
Moczydłowska, M. 2011. The early Cambrian phytoplankton radiation: Acritarch evidence from the Lükati Formation, Estonia. Palynology, 35:103145.Google Scholar
Moczydłowska, M. and Nagovitsin, K. E. 2012. Ediacaran radiation of organic-walled microbiota recorded in the Ura Formation, Patom Uplift, East Siberia. Precambrian Research, 198–199:124.Google Scholar
Moczydłowska, M., Vidal, G., and Rudavskaya, V. A. 1993. Neoproterozoic (Vendian) phytoplankton from the Siberian Platform, Yakutia. Palaeontology, 36:495521.Google Scholar
Nagovitsyn, K. E., Faizullin, M. S., and Yakshin, M. S. 2004. New forms of Baikalian acanthomorphytes from the Ura Formation of the Patom Uplift, East Siberia. Geologiya e Geofisika, 45:719.Google Scholar
Narbonne, G. M., Xiao, S., Gehling, J. G., and Shields-Zhou, G. A. 2012. The Ediacaran Period, p. 413435. In Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G. (eds.), Geological Time Scale 2012. Elsevier, Oxford.Google Scholar
Nikolaev, S. I., Berney, C., Fahrni, J. F., Bolivar, I., Polet, S., Mylnikov, A. P., Aleshin, V. V., Petrov, N. B., and Pawlowski, J. 2004. The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proceedings of the National Academy of Sciences, U.S.A., 101:80668071.Google Scholar
Parfrey, L. W., Grant, J., Tekle, Y. I., Lasek-Nesselquist, E., Morrison, H. G., Sogin, M. L., Patterson, D. J., and Katz, L. A. 2010. Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Systematic Biology, 59:518533.Google Scholar
Petryshyn, V. A., Bottjer, D. J., Chen, J.-Y., and Gao, F. 2012. Petrographic analysis of new specimens of the putative microfossil Vernanimalcula guizhouena (Doushantuo Formation, South China). Precambrian Research, 225:5866.Google Scholar
Schiffbauer, J. D., Xiao, S., Sen Sharma, K., and Wang, G. 2012. The origin of intracellular structures in Ediacaran metazoan embryos. Geology, 40:223226.Google Scholar
Schopf, J. M., Wilson, L. R., and Bentall, R. 1944. An annotated synopsis of Paleozoic fossil spores and the definition of generic groups. Illinois State Geological Survey Report of Investigations, 91:166.Google Scholar
Sergeev, V. N., Knoll, A. H., and Vorob'eva, N. G. 2011. Ediacaran microfossils from the Ura Formation, Baikal-Patom Uplift, Siberia: Taxonomy and biostratigraphic significance. Journal of Paleontology, 85:9871011.Google Scholar
Spjeldnaes, N. 1963. A new fossil ( Papillomembrana sp.) from the upper Precambrian of Norway. Nature, 200:6364.Google Scholar
Spjeldnaes, N. 1967. Fossils from pebbles of the Biskopasen Formation in southern Norway. Bulletin, Norges Geologiske Undersokelse, 251:5382.Google Scholar
Srivastava, P. 2009. Trachyhystrichosphaera: An age-marker acanthomorph from the Bhander group, upper Vindhyan, Rajasthan. Journal of Earth System Science, 118:575582.Google Scholar
Tiwari, M. and Azmi, R. J. 1992. Late Proterozoic organic-walled microfossils from the Infrakrol of Solan, Himchal Lesser Himalaya: An additional age constraint in the Krol Belt succession. Palaeobotanist, 39:387394.Google Scholar
Tiwari, M. and Knoll, A. H. 1994. Large acanthomorphic acritarchs from the Infrakrol Formation of the Lesser Himalaya and their stratigraphic significance. Journal of Himalayan Geology, 5:193201.Google Scholar
Tiwari, M. and Pant, C. C. 2004. Neoproterozoic silicified microfossilsin Infrakrol Formation of Lesser Himalaya, India. Himalayan Geology, 25:121.Google Scholar
Veis, A. F., Vorob'eva, N. G., and Golubkova, E. Y. 2006. The early Vendian microfossils first found in the Russian Plate: Taxonomic composition and biostratigraphic significance. Stratigraphy and Geological Correlation, 14:368385.Google Scholar
Vidal, G. 1990. Giant acanthomorph acritarchs from the upper Proterozoic in southern Norway. Palaeontology, 33:287298.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Knoll, A. H. 2009a. Neoproterozoic microfossils from the margin of the East European Platform and the search for a biostratigraphic model of lower Ediacaran rocks. Precambrian Research, 173:163169.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Knoll, A. H. 2009b. Neoproterozoic microfossils from the northeastern margin of the East European Platform. Journal of Paleontology, 83:161196.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Chumakov, N. M. 2008. New finds of early Vendian microfossils in the Ura Formation: Revision of the Patom Supergroup Age, middle Siberia. Doklady Earth Sciences, 419A:411416.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Semikhatov, M. A. 2006. Unique lower Vendian Kel'tma microbiota, Timan ridge: New evidence for the paleontological essence and global significance of the Vendian system. Doklady Earth Sciences, 410:10381043.Google Scholar
Wang, D., Chen, L., Tang, Q., and Pang, K. 2012. Spheroidal fossils with helically distributed pores from the Ediacaran Doushantuo phosphorites of Weng'an, Guizhou. Acta Palaeontologica Sinica, 51:8895.Google Scholar
Willman, S. 2007. Acritarchs and their potential in Ediacaran biostratigraphy—examples from the Officer Basin, Australia. Comunicações Geológicas, 94:8192.Google Scholar
Willman, S. and Moczydłowska, M. 2008. Ediacaran acritarch biota from the Giles 1 drillhole, Officer Basin, Australia, and its potential for biostratigraphic correlation. Precambrian Research, 162:498530.Google Scholar
Willman, S. and Moczydłowska, M. 2011. Acritarchs in the Ediacaran of Australia—local or global significance? Evidence from the Lake Maurice West 1 drillcore. Review of Palaeobotany and Palynology, 166:1228.Google Scholar
Willman, S., Moczydłowska, M., and Grey, K. 2006. Neoproterozoic (Ediacaran) diversification of acritarchs: A new record from the Murnaroo 1 drillcore, eastern Officer Basin, Australia. Review of Palaeobotany and Palynology, 139:1739.CrossRefGoogle Scholar
Winslow, M. R. 1962. Plant spores and other microfossils from Upper Devonian and Lower Mississippian rocks of Ohio. U.S. Geological Survey Professional Paper, 364:193.Google Scholar
Xiao, S. 2004. New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic, Yangtze Gorges, South China). Journal of Paleontology, 78:393401.Google Scholar
Xiao, S. 2008. Geobiological events in the Ediacaran Period, p. 85104. In Kelly, P. H. and Bambach, R. K. (eds.), From Evolution to Geobiology: Research Questions Driving Paleontology at the Start of a New Century. The Paleontological Society, New Haven.Google Scholar
Xiao, S., Bao, H., Wang, H., Kaufman, A. J., Zhou, C., Li, G., Yuan, X., and Ling, H. 2004a. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: Evidence for a post-Marinoan glaciation. Precambrian Research, 130:126.Google Scholar
Xiao, S., Hagadorn, J. W., Zhou, C., and Yuan, X. 2007a. Rare helical spheroidal fossils from the Doushantuo Lagerstätte: Ediacaran animal embryos come of age? Geology, 35:115118.Google Scholar
Xiao, S. and Knoll, A. H. 1999. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China. Lethaia, 32:219240.Google Scholar
Xiao, S. and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74:767788.Google Scholar
Xiao, S., Knoll, A. H., Schiffbauer, J. D., Zhou, C., and Yuan, X. 2012a. Comment on “Fossilized nuclei and germination structures identify Ediacaran ‘animal embryos' as encysting protists”. Science, 335:1169c.Google Scholar
Xiao, S., Knoll, A. H., Yuan, X., and Pueschel, C. M. 2004b. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. American Journal of Botany, 91:214227.Google Scholar
Xiao, S., Knoll, A. H., Zhang, L., and Hua, H. 1999. The discovery of Wengania globosa in Doushantuo phosphorites in Chadian, Shaanxi Province. Acta Micropalaeontologica Sinica, 16:259266.Google Scholar
Xiao, S., Kowalewski, M., Shen, B., Dong, L., and Laflamme, M. 2009. The rise of bilaterians: A reply. Historical Biology, 21:239246.Google Scholar
Xiao, S., Kowalewski, M., Shen, B., Dong, L., and Laflamme, M. 2010a. The rise of bilaterians: A few closing comments. Historical Biology, 22:433436.Google Scholar
Xiao, S., McFadden, K. A., Peek, S., Kaufman, A. J., Zhou, C., Jiang, G., and Hu, J. 2012b. Integrated chemostratigraphy of the Doushantuo Formation at the northern Xiaofenghe section (Yangtze Gorges, South China) and its implication for Ediacaran stratigraphic correlation and ocean redox models. Precambrian Research, 192–195:125141.Google Scholar
Xiao, S., Schiffbauer, J. D., McFadden, K. A., and Hunter, J. 2010b. Petrographic and SIMS pyrite sulfur isotope analyses of Ediacaran chert nodules: Implications for microbial processes in pyrite rim formation, silicification, and exceptional fossil preservation. Earth and Planetary Science Letters, 297:481495.Google Scholar
Xiao, S., Yuan, X., and Knoll, A. H. 2000. Eumetazoan fossils in terminal Proterozoic phosphorites? Proceedings of the National Academy of Sciences, U.S.A., 97:1368413689.Google Scholar
Xiao, S., Zhang, Y., and Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391:553558.Google Scholar
Xiao, S., Zhou, C., and Yuan, X. 2007b. Undressing and redressing Ediacaran embryos. Nature, 446:E910.Google Scholar
Xie, G., Zhou, C., McFadden, K. A., Xiao, S., and Yuan, X. 2008. Microfossils discovered from the Sinian Doushantuo Formation in the Jiulongwan section, East Yangtze Gorges area, Hubei Province, South China. Acta Palaeontologica Sinica, 47:279291.Google Scholar
Xue, Y., Tang, T., Yu, C., and Zhou, C. 1995. Large spheroidal chlorophyta fossils from the Doushantuo Formation phosphoric sequence (late Sinian), central Guizhou, South China. Acta Palaeontologica Sinica, 34:688706.Google Scholar
Yin, C. 1990. Spinose acritarchs from the Toushantuo Formation and its geological significance. Acta Micropalaeontologica Sinica, 7:265270.Google Scholar
Yin, C. 2001. Discovery of Papillomembrana compta in Weng'an, Guizhou with discussion on the correlation of the large acanthomorphic acritarchs and the age of the Doushantuo Formation. Journal of Stratigraphy, 25:253258.Google Scholar
Yin, C., Bengtson, S., and Yue, Z. 2004. Silicified and phosphatized Tianzhushanian, spheroidal microfossils of possible animal origin from the Neoproterozoic of South China. Acta Palaeontologica Polonica, 49:112.Google Scholar
Yin, C. and Gao, L. 1995. The early evolution of the acanthomorphic acritarchs in China and their biostratigraphic implication. Acta Geologica Sinica, 469:360373.Google Scholar
Yin, C., Gao, L., and Xing, Y. 2001a. Discovery of Tianzhushania in Doushantuo phosphorites, in Weng'an, Guizhou Province. Acta Palaeontologica Sinica, 40:497504.Google Scholar
Yin, C., Gao, L., and Xing, Y. 2001b. New observations on phosphatized spheroidal fossils in Sinian Doushantuo phosphorites in Weng'an, Guizhou Province. Acta Geologica Sinica (Chinese Edition), 75:145150.Google Scholar
Yin, C., Gao, L., and Yue, Z. 2003. New advances in the study of the Sinian Doushantuo acritarch genus Tianzhushania . Geological Bulletin of China, 22:8794.Google Scholar
Yin, C. and Liu, G. 1988. Micropaleofloras, p. 170180. In Zhao, Z., Xing, Y., Ding, Q., Liu, G., Zhao, Y., Zhang, S., Meng, X., Yin, C., Ning, B., and Han, P. (eds.), The Sinian System of Hubei. China University of Geosciences Press, Wuhan.Google Scholar
Yin, C., Liu, P., Awramik, S. M., Chen, S., Tang, F., Gao, L., Wang, Z., and Riedman, L. A. 2011a. Acanthomorph biostratigraphic succession of the Ediacaran Doushantuo Formation in the East Yangtze Gorges, South China. Acta Geologica Sinica (English Edition), 85:283295.Google Scholar
Yin, C., Liu, P., Chen, S., Tang, F., Gao, L., and Wang, Z. 2009a. Acritarch biostratigraphic succession of the Ediacaran Doushantuo Formation in the Yangtze Gorges. Acta Palaeontologica Sinica, 48:146154.Google Scholar
Yin, C., Liu, P., Gao, L., Tang, F., and Chen, S. 2009b. New data of phosphatized microfossils from the Doushantuo Formation in Baizhu, Baokang County, Hubei Province, and their stratigraphic implications. Acta Geoscientica Sinica, 30:447456.Google Scholar
Yin, C., Liu, Y., Gao, L., Wang, Z., Tang, F., and Liu, P. 2007a. Phosphatized Biota in Early Sinian (Ediacaran)—Weng'an Biota and Its Environment. Geological Publishing House, Beijing.Google Scholar
Yin, L. 1985. Microfossils of the Doushantuo Formation in the Yangtze Gorge district, western Hubei. Palaeontologia Cathayana, 2:229249.Google Scholar
Yin, L. 1987. Microbiotas of latest Precambrian sequences in China, p. 415494. In Nanjing Institute of Geology and Palaeontology Academica Sinica (ed.), Stratigraphy and Palaeontology of Systemic Boundaries in China: Precambrian–Cambrian Boundary (1). Nanjing University Press, Nanjing.Google Scholar
Yin, L. and Li, Z. 1978. Precambrian microfloras of southwest China with reference to their stratigraphic significance. Memoir Nanjing Institute of Geology and Palaeontology, Academia Sinica, 10:41108.Google Scholar
Yin, L., Wang, D., Yuan, X., and Zhou, C. 2011b. Diverse small spinose acritarchs from the Ediacaran Doushantuo Formation, South China. Palaeoworld, 20:279289.Google Scholar
Yin, L., Xiao, S., and Yuan, Y. 2001c. New observations on spicule-like structures from Doushantuo phosphorites at Weng'an, Guizhou Province. Chinese Science Bulletin, 46:18281832.Google Scholar
Yin, L. and Xue, Y. 1993. An extraordinary microfossil assemblage from terminal Proterozoic phosphate deposits in south China. Chinese Journal of Botany, 5 (2):168175.Google Scholar
Yin, L., Zhou, C., and Yuan, X. 2008. New data on Tianzhushania—an Ediacaran diapause egg cyst from Yichang, Hubei. Acta Palaeontologica Sinica, 47:129140.Google Scholar
Yin, L., Zhu, M., Knoll, A. H., Yuan, X., Zhang, J., and Hu, J. 2007b. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446:661663.Google Scholar
Yin, Z., Zhu, M., Tafforeau, P., Chen, J., Liu, P., and Li, G. 2013. Early embryogenesis of potential bilaterian animals with polar lobe formation from the Ediacaran Weng'an Biota, South China. Precambrian Research, 225:4457.Google Scholar
Yuan, X. and Hofmann, H. J. 1998. New microfossils from the Neoproterozoic (Sinian) Doushantuo Formation, Weng'an, Guizhou Province, southwestern China. Alcheringa, 22:189222.Google Scholar
Yuan, X., Xiao, S., and Taylor, T. N. 2005. Lichen-like symbiosis 600 million years ago. Science, 308:10171020.Google Scholar
Yuan, X., Xiao, S., Yin, L., Knoll, A. H., Zhou, C., and Mu, X. 2002. Doushantuo Fossils: Life on the Eve of Animal Radiation. China University of Science and Technology Press, Hefei, China.Google Scholar
Zang, W. and Walter, M. R. 1992. Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia. The Association of Australasia Palaeontologists Memoir 12:1132.Google Scholar
Zhang, Y. 1989. Multicellular thallophytes with differentiated tissues from late Proterozoic phosphate rocks of South China. Lethaia, 22:113132.Google Scholar
Zhang, Y., Yin, L., Xiao, S., and Knoll, A. H. 1998a. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. Journal of Paleontology Memoir, Supplement to 72:152.Google Scholar
Zhang, Y. and Yuan, X. 1992. New data on multicellular thallophytes and fragments of cellular tissues from late Proterozoic phosphate rocks, South China. Lethaia, 25:118.Google Scholar
Zhang, Y., Yuan, X., and Yin, L. 1998b. Interpreting late Precambrian microfossils. Science, 282:1783.Google Scholar
Zhang, Z. 1984a. A new microphytoplankton species from the Sinian of western Hubei Province. Acta Botanica Sinica, 26:9498.Google Scholar
Zhang, Z. 1984b. A new microphytoplankton species from the Sinian of western Hubei Province. Acta Botanica Sinica, 26:9498.Google Scholar
Zhou, C., Brasier, M. D., and Xue, Y. 2001. Three-dimensional phosphatic preservation of giant acritarchs from the terminal Proterozoic Doushantuo Formation in Guizhou and Hubei provinces, South China. Palaeontology, 44:11571178.Google Scholar
Zhou, C., Chen, Z., and Xue, Y. 2002a. New microfossils from the late Neoproterozoic Doushantuo Formation at Chaoyang phosphorite deposit in Jiangxi Province, South China. Acta Palaeontologica Sinica, 41:178192.Google Scholar
Zhou, C. and Xiao, S. 2007. Ediacaran δ13C chemostratigraphy of South China. Chemical Geology, 237:89108.Google Scholar
Zhou, C., Xie, G., McFadden, K., Xiao, S., and Yuan, X. 2007. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: Causes and biostratigraphic significance. Geological Journal, 42:229262.Google Scholar
Zhou, C., Yuan, X., and Xiao, S. 2002b. Phosphatized biotas from the Neoproterozoic Doushantuo Formation on the Yangtze Platform. Chinese Science Bulletin, 47:19181924.Google Scholar
Zhou, C., Yuan, X., Xiao, S., Chen, Z., and Xue, Y. 2004. Phosphatized fossil assemblage from the Doushantuo Fromation in Baokang, Hubei Province. Acta Micropalaeontologica Sinica, 21:349366.Google Scholar
Zhu, M., Lu, M., Zhang, J., Zhao, F., Li, G., Yang, A., Zhao, X., and Zhao, M. 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Research, 225:728.Google Scholar
Zhu, M., Zhang, J., and Yang, A. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254:761.Google Scholar