Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T17:23:38.386Z Has data issue: false hasContentIssue false

The Placentian Series: appearance of the oldest skeletalized faunas in southeastern Newfoundland

Published online by Cambridge University Press:  19 May 2016

Ed Landing
Affiliation:
1New York State Geological Survey, The State Education Department, Albany 12230
Paul Myrow
Affiliation:
2Department of Geology, Colorado College, Colorado Springs 80903
Alison P. Benus
Affiliation:
3Department of Geosciences, State University of New York at Binghamton 13901
Guy M. Narbonne
Affiliation:
4Department of Geological Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada

Abstract

The lowest Cambrian of Avalon, or Placentian Series, is a relatively thick sequence (1,400 m) in southeastern Newfoundland. A newly proposed body fossil zonation supplements an existing trace fossil zonation of the lower part of the Placentian Series and includes strata to the top of the sub-trilobitic Lower Cambrian.

The Sabellidites cambriensis Zone brackets the Precambrian–Cambrian boundary and comprises peritidal and wave-influenced subtidal facies deposited during deepening through the lower part of the Chapel Island Formation. Younger “Ladathecacylindrica Zone strata include the deepest facies of the Chapel Island Formation. The base of the overlying Watsonella crosbyi Zone (a post-Nemakit Daldyn and pre-Tommotian equivalent) is significantly diachronous because the diagnostic mollusks were preferentially preserved in pyritiferous offshore muds rather than in coeval nearshore muds. High diversity, upper Watsonella crosbyi Zone faunas (18 species) are limited to peritidal limestones of member 4 and are dominated by calcareous small shelly fossils. A thick interval (ca. 430 m) without body fossils and an important episode of block faulting that led to 750 m of differential erosion preceded deposition of the lower part of the Bonavista Group (=Sunnaginia imbricata Zone, an interval considered to be largely older than the Tommotian). Although much Early Cambrian time may be lost as a result of erosion at Random Formation–Bonavista Group unconformities, many Watsonella crosbyi Zone species reappear in the Sunnaginia imbricata Zone. Shoaling accompanied the immigration event defining the base of the Camenella baltica Zone, and an unconformity following regional offlap marks the top of the Placentian Series.

Calcareous, and not phosphatic, composition is most common in earliest Cambrian shelly remains. Little evidence suggests that a global, Precambrian–Cambrian boundary interval “phosphogenic” event either resulted in deposition of local phosphate deposits in the Tethyan region or had a role in the appearance of mineralized skeletons.

Twenty metazoans and problematica and an alga are illustrated from the Chapel Island Formation. Bemella? vonbitteri Landing n. sp. and Halkieria stonei Landing n. sp. are described. The monoplacophoran Archaeospira? avalonensis Landing n. sp. has right-and left-handed conchs comparable to those of Archaeospira (=Yangtzespira) from China. Anabarites is the senior generic synonym of Tiksitheca.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aigner, T. 1982. Calcareous tempestites: storm-dominated stratification in upper Muschelkalk Limestones (Middle Trias, SW-Germany), p. 180198. In Einsele, G. and Seilacher, A. (eds.), Cyclic and Event Sedimentation. Springer-Verlag, New York.CrossRefGoogle Scholar
Alcock, F. J. 1938. Geology of Saint John region, New Brunswick. Geological Survey of Canada Memoir 216, 65 p.Google Scholar
Allen, J. R. L. 1986. Pedogenic calcretes in the Old Red Sandstone facies (Late Silurian-Early Carboniferous) of the Anglo-Welsh area, southern Britain, p. 5886. In Wright, V. P. (ed.), Paleosols: Their Recognition and Interpretation. Princeton University Press, Princeton, New Jersey.Google Scholar
Allen, P. M., and Jackson, A. A. 1978. Bryn-teg Borehole, North Wales. Bulletin of the Geological Survey of Great Britain, 61, 48 p.Google Scholar
Anderson, M. M. 1987. Stratigraphy of Cambrian rocks at Bacon Cove, Duffs, and Manuels River, Conception Bay, Avalon Peninsula, eastern Newfoundland. Geological Society of America Centennial Field Guide—Northeastern Section, p. 467472.Google Scholar
Bengtson, S. 1976. The structure of some Middle Cambrian conodonts and the early evolution of conodont structure and function. Lethaia, 9:185206.CrossRefGoogle Scholar
Bengtson, S., and Conway Morris, S. 1984. Comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia . Lethaia, 17:305329.CrossRefGoogle Scholar
Bengtson, S., and Fletcher, T. P. 1983. The oldest sequence of skeletal fossils in the Lower Cambrian of southeastern Newfoundland. Canadian Journal of Earth Sciences, 20:525536.CrossRefGoogle Scholar
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point Formation, Avalon Zone, eastern Newfoundland), p. 89. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian–Cambrian Boundary. New York State Museum Bulletin 463.Google Scholar
Benus, A. P., and Landing, E. 1984. Depositional environments and biofacies of the Bonavista Formation (Early Cambrian, eastern Newfoundland). Geological Society of America, Abstracts with Programs, 16:3.Google Scholar
Berner, R. A. 1980. Early Diagenesis: A Theoretical Approach. Princeton University Press, Princeton, New Jersey, 241 p.Google Scholar
Billings, E. 1872. On some fossils from the Primordial rocks of Newfoundland. The Canadian Naturalist, 6:465479.Google Scholar
Brasier, M. 1979. The Cambrian radiation event, p. 103159. In House, M. R. (ed.), The Origin of Major Invertebrate Groups. The Systematics Association Special Vol. 12, Academic Press, New York.Google Scholar
Brasier, M. 1980. The Lower Cambrian transgression and glauconite–phosphate facies in western Europe. Journal of the Geological Society of London, 137:695703.CrossRefGoogle Scholar
Brasier, M. 1982. Sea-level changes, facies changes and the late Precambrian–Early Cambrian evolutionary explosion. Precambrian Research, 17:105132.CrossRefGoogle Scholar
Brasier, M. 1984. Microfossils and small shelly fossils from the Lower Cambrian Hyolithes Limestone at Nuneaton, English Midlands. Geological Magazine, 121:229253.CrossRefGoogle Scholar
Brasier, M. 1985. Evolutionary and geological events across the Precambrian–Cambrian boundary. Geology Today, 1:141146.CrossRefGoogle Scholar
Brasier, M. 1986a. The succession of small shelly fossils (especially conoidal microfossils) from English Precambrian–Cambrian boundary beds. Geological Magazine, 123:237256.CrossRefGoogle Scholar
Brasier, M. 1986b. Precambrian–Cambrian boundary biotas and events, p. 109117. In Walliser, O. H. (ed.), Global Bio-Events. Lecture Notes in Earth Sciences 8, Springer-Verlag, New York.CrossRefGoogle Scholar
Brasier, M., and Hewitt, R. A. 1979. Environmental setting of fossiliferous rocks from the uppermost Proterozoic–Lower Cambrian of central England. Palaeogeography, Palaeoclimatology, Palaeoecology, 27:3557.CrossRefGoogle Scholar
Brasier, M., and Singh, P. 1987. Microfossils and Precambrian–Cambrian boundary stratigraphy at Maldeota, Lesser Himalaya. Geological Magazine, 124:323345.CrossRefGoogle Scholar
Brewer, R. 1964. Fabric and Mineral Analysis of Soils. John Wiley & Sons, New York, 470 p.Google Scholar
Chen, P., and Zhang, F. 1980. Small shelly fossil assemblage from the Meishucunian Stage of Yunnan. Wuhan College of Geology Studies, 26:190197.Google Scholar
Cobbold, E. S. 1919. Cambrian Hyolithidae, etc., from the Hartshill in the Nuneaton district, Warwickshire. Geological Magazine, 6:149158.CrossRefGoogle Scholar
Cobbold, E. S. 1921. The Cambrian horizons of Comley (Shropshire) and their Brachiopoda, Pteropoda, Gasteropoda, etc. Quarterly Journal of the Geological Society of London, 76:325386.CrossRefGoogle Scholar
Cobbold, E. S. 1935. Lower Cambrian faunas from Hérault, France. The Annals and Magazine of Natural History, 16(91):2548.CrossRefGoogle Scholar
Cohee, G. V. 1970. Generally recognized European stages. American Association of Petroleum Geologists Advisory Committee on Stratigraphic Coding, 27 p.Google Scholar
Conway Morris, S. 1987. The search for the Precambrian–Cambrian boundary. American Scientist, 75:156167.Google Scholar
Cook, P. J., and Shergold, J. H. 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian–Cambrian boundary. Nature, 308:231236.CrossRefGoogle Scholar
Cowie, J. W., and Rozanov, A. Yu. 1974. I.U.G.S. Precambrian/ Cambrian Boundary Working Group in Siberia, 1973. Geological Magazine, 111:237252.CrossRefGoogle Scholar
Cowie, J. W., Rushton, A. W. A., and Stubblefield, C. J. 1972. A correlation of Cambrian rocks in the British Isles. Special Report of the Geological Society of London, 2, 56 p.Google Scholar
Crimes, T. P., and Anderson, M. M. 1985. Trace fossils from late Precambrian–Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. Journal of Paleontology, 59:310343.Google Scholar
Culver, S. J., Pojeta, J. Jr., and Repetski, J. E. 1988. First record of Early Cambrian shelly microfossils from west Africa. Geology, 16:596599.2.3.CO;2>CrossRefGoogle Scholar
Dick, V. B., and Brett, C. E. 1985. Petrology, taphonomy and sedimentary environments of pyritic fossil beds from the Hamilton Group (Middle Devonian) of western New York, p. 102128. In Brett, C. E. (ed.), Dynamic Stratigraphy and Depositional Environments of the Hamilton Group (Middle Devonian) in New York State, Part I. New York State Museum Bulletin 457.Google Scholar
Eckert, B., and Brett, C. E. In press. Bathymetry and paleoecology of Silurian benthic assemblages, Late Llandoverian, New York State. Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Eichwald, E. von. 1860. Lethaea rossica ou paleontologie de la Russie. E. Schweitzerbart, Stuttgart, 1,657 p.Google Scholar
Fedonkin, M. 1988. Paleoichnology of the Precambrian–Cambrian transition in the Russian Platform and Siberia, p. 12. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian–Cambrian Boundary. New York State Museum Bulletin 463.Google Scholar
Fedonkin, M., Gnilovskaya, M. B., Jankauskas, T. V., Kirjanov, V. V., Lendzion, K., Mierzejewska, G., Palu, V. M., Paskeviciene, L. T., Piskun, L. V., Posti, E., Rozanov, A. Yu., Urbanek, A., and Volkova, N. A. 1983. Upper Precambrian and Cambrian Paleontology of the East-European Platform. Publishing House Wydawnictwa Geologiczne Warszawa, 158 p.Google Scholar
Fletcher, T. P. 1972. Geology and Lower to Middle Cambrian trilobite faunas of southeast Avalon, Newfoundland. Unpubl. Ph.D. dissertation, University of Cambridge, Cambridge, United Kingdom, 472 p.Google Scholar
Glaessner, M. F. 1984. The Dawn of Animal Life. Cambridge University Press, New York, 244 p.Google Scholar
Gnilovskaya, M. B. 1971. The oldest Vendian aquatic plants from the Russian Platform. Paleontological Journal, 3:325332.Google Scholar
Golubev, S. N. 1976. Ontogeneticheskie izmyenyeniya i evolyotsinnye tendentsiy rannekembriaskich spiralinich gastropod Pelagiellacea. Paleontologicheskii Zhurnal, 51:3440.Google Scholar
Grabau, A. W. 1900. Palaeontology of the Cambrian terranes of the Boston Basin. Occasional Papers of the Boston Society of Natural History, 4:601694.Google Scholar
Grabau, A. W., and Shimer, H. W. 1909. North American Index Fossils-Invertebrates, Volume 1. A. G. Seiler & Co., New York, 853 p.CrossRefGoogle Scholar
Groom, T. 1902. The sequence of the Cambrian and associated beds of the Malvern Hills. Quarterly Journal of the Geological Society of London, 58:89135.CrossRefGoogle Scholar
Hakes, W. G. 1976. Trace fossils and depositional environment of four clastic units, Upper Pennsylvanian megacyclothems, northeast Kansas. University of Kansas Paleontological Contributions, 63, 46 p.Google Scholar
Hall, J. 1847. Palaeontology of New York, Volume 1. C. van Benthuysen, Albany, 338 p.Google Scholar
Haq, B. U., and Van Eysinga, F. W. B. 1987. Geological Time Scale, fourth edition. Elsevier Science Publishing Company, New York.Google Scholar
Harland, W. B., Cox, A. V., Llewellyn, P. G., Picton, C. A. G., Smith, A. G., and Walters, R. 1982. A Geologic Time Scale. Cambridge University Press, 131 p.Google Scholar
Hayes, A. O., and Howell, B. J. 1937. Geology of the Saint John, New Brunswick. Geological Society of America Special Paper 5, 146 p.Google Scholar
He, T.-G. 1981. Lower Cambrian (Meishucunian) sachitids and their stratigraphic significance. Chendu Dizhi Xueyuan Xiebao, 2:8490 (in Chinese).Google Scholar
He, T.-G., and Yang, X.-H. 1982. Lower Cambrian Meishucun Stage of the western Yangtze stratigraphic region and its small shelly fossils. Bulletin of the Chendu Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 3:6995 (in Chinese).Google Scholar
Hedberg, H. D. 1972. Introduction to an international stratigraphic classification, terminology, and usage. Lethaia, 5:285295.Google Scholar
Hinz, I. 1987. The Lower Cambrian microfauna of Comley and Rushton, Shropshire/England. Palaeontographica Abteilung, 198:41100.Google Scholar
Hiscott, R. N. 1982. Tidal deposits of the Lower Cambrian Random Formation, eastern Newfoundland: facies and paleoenvironments. Canadian Journal of Earth Sciences, 19:20282046.CrossRefGoogle Scholar
Holl, H. B. 1865. On the geological structure of the Malvern Hills and adjacent districts. Quarterly Journal of the Geological Society of London, 21:72108.CrossRefGoogle Scholar
Holm, G. 1893. Sveriges Kambrisk–Siluriska Hyolithidae och Conularidae. Sveriges Geologiska Undersökning, Aflandlingar och Uppsater, 112, 172 p.Google Scholar
Hutchinson, R. D. 1952. The stratigraphy and trilobite faunas of the Cambrian sedimentary rocks of Cape Breton Island, Nova Scotia. Geological Survey of Canada Memoir 263, 124 p.Google Scholar
Hutchinson, R. D. 1962. Cambrian stratigraphy and trilobite faunas of southeastern Newfoundland. Geological Society of America Bulletin 88, 156 p.Google Scholar
Jablonski, D., and Bottjer, D. J. 1983. Soft-bottom epifaunal suspension-feeding assemblages in the Late Cretaceous, p. 747812. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.CrossRefGoogle Scholar
Jablonski, D., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science, 222:11231125.CrossRefGoogle ScholarPubMed
Jiang, Z.-W. 1980. Monoplacophorans and gastropods fauna [sic] of the Meishucun Stage from the Meichucun region, Yunnan. Acta Geologica Sinica, 54:112123 (in Chinese with English summary).Google Scholar
Kerber, M. 1988. Mikrofossilien aus Unterkambrischen Gesteinen der Montagne Noire, Frankreich. Paläontographica Abteilung A, 202:127203.Google Scholar
King, A. F. 1979. The birth of the Caledonides: late Precambrian rocks of the Avalon Peninsula, Newfoundland, and their correlatives in the Appalachian Orogen, p. 39. In Wones, D. R. (ed.), The Caledonides in the USA. Virginia Polytechnic Institute and State University, Blacksburg, Memoir 3.Google Scholar
Landing, E. 1984. Skeleton of lapworthellids and the suprageneric classification of tommotiids (Early and Middle Cambrian phosphatic problematica). Journal of Paleontology, 58:13801398.Google Scholar
Landing, E. 1988a. Bioturbation and infaunal diversity, Lower Cambrian, southeastern Newfoundland. Geological Society of America, Abstracts with Programs, 20:31.Google Scholar
Landing, E. 1988b. Trace fossils, small shelly fossils and the Precambrian-Cambrian boundary: a pre-meeting viewpoint, p. 13. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian–Cambrian Boundary. New York State Museum Bulletin 463.Google Scholar
Landing, E. 1988c. Lower Cambrian of eastern Massachusetts: stratigraphy and small shelly fossils. Journal of Paleontology, 62:661695.Google Scholar
Landing, E. 1988d. Depositional tectonics and biostratigraphy of the western portion of the Taconic allochthon, eastern New York State, p. 96110. In Landing, E. (ed.), The Canadian Paleontology and Biostratigraphy Seminar. New York State Museum Bulletin 462.Google Scholar
Landing, E. 1989. Paleoecology and distribution of the Early Cambrian rostroconch Watsonella crosbyi Grabau. Journal of Paleontology, 63:566573.CrossRefGoogle Scholar
Landing, E., and Benus, A. P. 1984. Lithofacies belts of the Smith Point Limestone (Lower Cambrian, southeastern Newfoundland) and the lowest occurrence of trilobites. Geological Society of America, Abstracts with Programs, 16:45.Google Scholar
Landing, E., and Benus, A. P. 1988a. Cambrian depositional history and stratigraphy, Avalon–Bonavista region, southeastern Newfoundland, 50 p. In Davenport, P. H., Hiscott, R. N., O'Neill, P. P., and Nolan, L. W. (eds.), Geological Association of Canada Annual Meeting, Field Trip Guidebook, Trip A3. Geological Association of Canada, Newfoundland Section, St. John's.Google Scholar
Landing, E., and Benus, A. P. 1988b. Stratigraphy of the Bonavista Group, southeastern Newfoundland: growth faults and the distribution of the sub-trilobitic Lower Cambrian, p. 5971. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian–Cambrian Boundary. New York State Museum Bulletin 463.Google Scholar
Landing, E., Narbonne, G. M., Myrow, P., Benus, A. P., and Anderson, M. M. 1988. Faunas and depositional environments of the Upper Precambrian through Lower Cambrian, southeastern Newfoundland, p. 1852. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian–Cambrian Boundary. New York State Museum Bulletin 463.Google Scholar
Landing, E., Narbonne, G. M., Myrow, P., Benus, A. P., Nowlan, G. S., and Fletcher, T. P. 1980. A microfauna associated with Early Cambrian trilobites of the Callavia zone, northern Antigonish Highlands, Nova Scotia. Canadian Journal of Earth Sciences, 17:400418.CrossRefGoogle Scholar
Linnarsson, J. G. O. 1871. Om några försteningar från Sveriges och Norges ‘Primordialzon.’ Ofversigt af Konglische Vetenskaps-Akademiens Förhandlingar, 6:789796.Google Scholar
Luo, H., Jiang, X., Wu, X., Song, X., Ouyang, L., et al. 1982. The Sinian Cambrian Boundary in eastern Yunnan, China. Yunnan Institute of Geological Sciences, The People's Publishing House, Yunnan, 265 p. (in Chinese with English summary).Google Scholar
Luo, H., Jiang, X., Wu, X., Song, X., Ouyang, L., et al. Xing, Y. Liu, G., Zang, S., and Tao, Y. 1984. Sinian–Cambrian Boundary Stratotype at Meishucun, Jinning, Yunnan, China. The People's Publishing House, Yunnan, 154 p.Google Scholar
Matthew, G. F. 1889. On Cambrian organisms in Acadia. Transactions of the Royal Society of Canada, 7(4):135162.Google Scholar
Matthew, G. F. 1899a. A Palaeozoic terrane beneath the Cambrian. Annals of the New York Academy of Sciences, 12:4156.CrossRefGoogle Scholar
Matthew, G. F. 1899b. The Etcheminian fauna of Smith Sound, Newfoundland. Transactions of the Royal Society of Canada 5(4):97119.Google Scholar
Matthew, G. F. 1899c. Preliminary notice of the Etcheminian fauna of Newfoundland. Bulletin of the Natural Historical Society of New Brunswick, 18:189196 (issued in 1902).Google Scholar
Matthew, G. F. 1900. Mr. Walcott's view of the Etcheminian. American Geologist, 25:255258.Google Scholar
Matthew, G. F. 1903. Report on the Cambrian rocks of Cape Breton. Geological Survey of Canada, Report No. 797, 246 p.CrossRefGoogle Scholar
Matthew, G. F. 1912. The sudden appearance of the Cambrian fauna. 11th International Geological Congress, Stockholm, 1:547559.Google Scholar
Matthew, G. F. 1914. The physics of the Cambrian formation in eastern Canada and the pecularities of its faunas. Transactions of the Royal Society of Canada, 3rd Series, 8(4):6985 (issued in 1915).Google Scholar
Matthews, S. C., and Missarzhevsky, V. V. 1975. Small shelly fossils of late Precambrian and Early Cambrian age. Journal of the Geological Society of London, 131:289304.CrossRefGoogle Scholar
Missarzhevsky, V. V. 1973. Konodontoobraznie organizma iz pogranichnykh sloev Kembriya i Dokembriya Sibirskoy Platformi i Kazakstana, p. 5358. In Problemi Paleontologii i Biostratigrafiya nizhnego Kembriya Sibiri i Dal'nego Vostoka. “Nauka,” Novosibirsk.Google Scholar
Missarzhevsky, V. V. 1983. Stratigrafiya dreveneyshikh tolshch Phanerozoya Anabarskogo Massiva. Sovetskaya Geologiya, 9:6273.Google Scholar
Moczydlowska, M., and Vidal, G. 1988. How old is the Tommotian? Geology, 16:166168.2.3.CO;2>CrossRefGoogle Scholar
Mount, J. F., and Signor, P. W. 1985. Early Cambrian innovation in shallow subtidal environments: paleoenvironments of Early Cambrian shelly fossils. Geology, 13:730733.2.0.CO;2>CrossRefGoogle Scholar
Müller, K. J. 1959. Kambrische Conodonten. Deutsche Geologische Gesellschaftung Zeitschrift, 111:434485.CrossRefGoogle Scholar
Müller, K. J. 1975. “Heraultia” varensalensis (Cobbold) aus dem Unteren Kambrium, des ältesten Fall von Geschlechtsdimorphismus. Paläontologisches Zeitschrift, 49:168180.CrossRefGoogle Scholar
Myrow, P. 1987. Sedimentology and depositional history of the Chapel Island Formation (late Precambrian to Early Cambrian), southeast Newfoundland. Unpublished Ph.D. dissertation, Memorial University of Newfoundland, St. John's, 509 p.Google Scholar
Müller, K. J., Narbonne, G. M., and Hiscott, R. N. 1988. Storm-shelf and tidal deposits of the Chapel Island and Random Formations, Burin Peninsula: fades and trace fossils, 105 p. In Davenport, P. H., Hiscott, R. N., O'Neill, P. P., and Nolan, L. W. (eds.), Geological Association of Canada Annual Meeting, Field Trip Guidebook, Trip B6. Geological Association of Canada, Newfoundland Section, St. John's.Google Scholar
Nagle, J. S. 1967. Wave and current orientation of shells. Journal of Sedimentary Petrology, 57:11241138.Google Scholar
Narbonne, G. M., and Myrow, P. 1988. Trace fossil biostratigraphy in the Precambrian–Cambrian boundary interval, p. 7276. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian–Cambrian Boundary. New York State Museum Bulletin 463.Google Scholar
Narbonne, G. M., and Landing, E. In press. Soft-bodied metazoans from the Lower Cambrian of the Burin Peninsula, Newfoundland. Journal of Paleontology.Google Scholar
Narbonne, G. M., and Landing, E., and Anderson, M. M. 1987. A candidate stratotype for the Precambrian–Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences, 24:12771293.CrossRefGoogle Scholar
North American Commission on Stratigraphic Nomenclature. 1983. North American Stratigraphic Code. American Association of Petroleum Geologists Bulletin, 67:841875.Google Scholar
Öpik, A. 1926. Über estlandischen blauen Ton. Sitzungbergiana Naturforschung, Gesellschaft der Universität Tartu, 3:157.Google Scholar
Orbigny, A.D.' 1850. Paléontologie française, terrains jurassiques, Vol. 2. Paris, 621 p.Google Scholar
Pojeta, J. Jr., and Runnegar, B. 1976. The paleontology of rostroconch mollusks and the early history of the phylum Mollusca. U.S. Geological Survey Professional Paper 968, 88 p.Google Scholar
Poulsen, C. 1967. Fossils from the Lower Cambrian of Bornholm. Det Kongelige Danske Videnskabernes Selskab Matematisk-Fysiske Meddelelser, 36(2), 49 p.Google Scholar
Rast, N., O'Brien, B. H., and Wardle, R. F. J. 1976. Relationships between Precambrian and lower Palaeozoic rocks of the ‘Avalon Platform’ in New Brunswick, the northeast Appalachians and the British Isles. Tectonophysics, 30:315338.CrossRefGoogle Scholar
Robison, R. A., and Rowell, A. J. (eds.). 1983. Paleontology and depositional environments. Cambrian of western North America. Brigham Young University Geology Studies, 23, 227 p.Google Scholar
Rozanov, A. Yu., and Missarzhevsky, V. V. 1966. Biostratigrafiya i fauna nizhnich gorozontov Kembriya. Akademiya Nauk SSSR, Geologicheskii Institut, Trudy 148, Izdatel'stvo “Nauka,” Moscow, 126 p.Google Scholar
Narbonne, G. M., and Landing, E. Valkova, N. A., Voronova, L. C., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pykhova, N. G., and Sidarov, A. D. 1969. Tommotskii yarus i problema nizhnej granitsky Kembriya. Akademiya Nauk SSSR, Ordena Trudovogo Krasnogo Zhumeni Geologicheskii Institut, 206, “Nauka,” Moscow, 359 p.Google Scholar
Runnegar, B. 1983. Molluscan phylogeny revisited. Memoirs of the Association of Australian Paleontologists, 1:121144.Google Scholar
Runnegar, B., and Jell, P. A. 1976. Australian Middle Cambrian mollusks and their bearing on Early Cambrian molluscan evolution. Alcheringa, 1:109138.CrossRefGoogle Scholar
Runnegar, B., and Pojeta, J. Jr. 1985. Origin and diversification of the Mollusca, p. 157. In Trueman, E. R. and Clarke, M. R. (eds.), The Mollusca, Vol. 10, Evolution. Academic Press, New York.Google Scholar
Rushton, A. W. A. 1974. The Cambrian of Wales and England, p. 43121. In Holland, C. H. (ed.), Cambrian of the British Isles, Norden, and Spitsbergen. John Wiley & Sons, New York.Google Scholar
Shaler, N. S., and Foerste, A. F. 1888. Preliminary description of North Attleboro fossils. Harvard Museum of Comparative Zoology Bulletin, 16:2741.Google Scholar
Shergold, J., and Brasier, M. 1987. Proterozoic and Cambrian phosphorites—Specialist studies: biochronology of Proterozoic and Cambrian phosphorites, p. 295326. In Cook, P. J. and Shergold, J. H. (eds.), Phosphate Deposits of the World, Volume 1. C. U. P. Google Scholar
Singh, P., and Shukla, D. S. 1981. Fossils from the Lower Tal: their age and its bearing on the stratigraphy of Lesser Himalaya. Geoscience Journal, 11:157176.Google Scholar
Smith, S. A., and Hiscott, R. N. 1984. Latest Precambrian to Early Cambrian basin evolution, Fortune Bay, Newfoundland: fault-bounded basin to platform. Canadian Journal of Earth Sciences, 21:13791392.CrossRefGoogle Scholar
Sokolov, B. S. and Zhuravleva, I. T. 1983. Yarosnoe rasolenie Nizhnego Kembriya Sibiri—Atlas okamenelostey. Izdatel'stvo “Nauka,” Moscow, 216 p.Google Scholar
Strauch, F. 1968. Determination of Cenozoic sea-temperatures using Hiatella arctica (Linné). Palaeogeography, Palaeoclimatology, Palaeoecology, 5:213233.CrossRefGoogle Scholar
Vail, P. R., Mitchum, R. M., and Thompsom, S. III. 1977. Seismic stratigraphy and global changes of sea level, Part 3: Relative changes of sea level from coastal onlap, p. 6381. In Payton, E. (ed.), Seismic Stratigraphy—Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists, Memoir 26.Google Scholar
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice Hall, Inc., Englewood Cliffs, New Jersey, 511 p.Google Scholar
Valkov, A. K. 1982. Biostratigrafiya nizhnego Kembriya Vostoka Sibirskoy Platformy (Ochoro-Maysky rayon). Izdatel'stvo “Nauka,” Moscow, 91 p.Google Scholar
Voronova, L. G., and Missarzhevsky, V. V. 1969. Nakhodi vodorosley i trubok chervey v pogranichnikh sloyakh Kembriya i Dokembriya na severe Sibirskoy Platformy. Doklady Akademii Nauk SSSR, 184:207210.Google Scholar
Vostokova, V. A. 1962. Kembriiskie gastropody Sibirskoy Platformy i Taimyra. Statei po Paleontologii i Biostratigrafii, 28:5174.Google Scholar
Walcott, C. D. 1889a. Descriptive notes on new genera and species from the Lower Cambrian or Olenellus Zone of North America. Proceedings of the U.S. National Museum, 12:3346.CrossRefGoogle Scholar
Walcott, C. D. 1889b. Stratigraphic position of the Olenellus fauna in North America and Europe. American Journal of Science, 3rd Series, 37:374392.Google Scholar
Walcott, C. D. 1890. The fauna of the Lower Cambrian or Olenellus Zone of North America. 10th Annual Report of the U.S. Geological Survey, 574 p.Google Scholar
Walcott, C. D. 1900. Lower Cambrian terrane in the Atlantic Province. Proceedings of the Washington Academy of Sciences, 1:301339.Google Scholar
Walcott, C. D. 1912. Cambrian Brachiopods. U.S. Geological Survey Monograph 60, 1,235 p.CrossRefGoogle Scholar
Walliser, O. H. 1958. Rhombocorniculum comleyensis n. gen. n. sp. (Incertae sedis, Unterkambrium, Shropshire). Paläontologisches Zeitschrift, 32:176180.CrossRefGoogle Scholar
Williams, A., and Rickards, B. 1984. Paleoecology of graptolitic black shales, p. 159166. In Bruton, D. (ed.), Aspects of the Ordovician System. Paleontology Contributions of the University of Oslo, 295.Google Scholar
Williams, H., and Hatcher, R. D. Jr. 1982. Suspect terranes and accretionary history of the Appalachian orogen. Geology, 10:530536.2.0.CO;2>CrossRefGoogle Scholar
Xing, Y., Ding, Q., Luo, H., He, P., Wang, Y., et al. 1983. The Sinian–Cambrian boundary of China. Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences, No. 10. Geological Publishing House, Beijing, 262 p. (in Chinese with English summary).Google Scholar
Xing, Y., Ding, Q., Luo, H., He, P., Wang, Y., et al., and Luo, H. 1984. Precambrian–Cambrian boundary candidate, Meishucun, Jinning, Yunnan, China. Geological Magazine, 121:143154.Google Scholar
Yanichevsky, M. 1926. Ob ostatkakh trubchatykh chervey iz Kembriyskoy siney gliny. Paleontologiskogo Obshtchestvo Rossiya, 4:99111.Google Scholar
Yin, J. C., Ding, L.-F., He, T.-G., Li, S.-L., and Shen, L.-N. 1980. The Stratigraphy, Palaeontology and Sedimentary Environment of the Sinian System in Emei and Ganluo, Sichuan. The Sichuan People's Publishing House, 57 p. (in Chinese).Google Scholar
Yu, W. 1974. Cambrian Gastropoda, p. 113. In A Handbook of the Stratigraphy and Palaeontology of Southwest China. Science Press, Beijing (in Chinese).Google Scholar
Yu, W. 1979. Earliest Cambrian monoplacophorans and gastropods from W. Hubei and E. Yunnan. Acta Palaeontologica Sinica, 18:233270 (in Chinese with English summary).Google Scholar
Yu, W. 1984. Early Cambrian molluscan faunas of Meishucun Stage with special references to Precambrian–Cambrian boundary. Academica Sinica Developments in Geosciences, Contributions to 27th International Geological Congress, Science Press, Beijing, p. 2135.Google Scholar
Yu, W. 1987. Yangtze micromolluscan fauna in Yangtze region of China with notes on Precambrian–Cambrian boundary. Stratigraphy and Paleontology of Systematic Boundaries in China, 1:19275.Google Scholar