Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T11:06:00.280Z Has data issue: false hasContentIssue false

Systematics and paleobiogeography of Late Triassic Gryphaea (Bivalvia) from the North American Cordillera

Published online by Cambridge University Press:  20 May 2016

Christopher A. Mcroberts*
Affiliation:
Department of Geology, Heroy Geology Laboratory, Syracuse University, Syracuse, New York 13244-1070

Abstract

Evaluation of previously undescribed collections of Late Triassic Gryphaea from the North American Cordillera increases the temporal range and geographic distribution of the genus. Gryphaea (Gryphaea) arcuataeformis Kiparisova, G. cf. G. (Gryphaea) keilhaui Böhm, and a new species, G. (Gryphaea) nevadensis, occur in lower Carnian to upper Norian strata from Alaska, British Columbia, Oregon, and Nevada. The distribution is mostly primary with respect to the Upper Triassic North American Craton, and requires long-distance larval dispersal along the latitude of far-eastern Panthalassa. Unlike most modern oysters, the distribution of these Triassic gryphaeids may have been restricted to cool and deeper water environments.

An early Carnian age of Gryphaea (Gryphaea) arcuataeformis places this species as the oldest known Gryphaea. When combined with late Carnian and Norian occurrences from the North and South American Cordillera, these data indicate that a low-latitude origin for the genus cannot be overlooked. Gryphaeids survived the end-Triassic extinction event presumably by living in refugia.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayer, U., Johnson, A. L. A., and Brannan, J. 1985. Ecological patterns in Middle Jurassic Gryphaea: the relationship between form and environment, p. 436463. In Bayer, U. and Seilacher, A. (eds.), Sedimentary and Evolutionary Cycles. Lecture Notes in Earth Sciences 1. Springer-Verlag, Berlin.Google Scholar
Beurlen, K. 1944. Breitäge zur stammengeschichte der muschlen. München Akademie Sitzungsberichte, 11:113131.Google Scholar
Böhm, J. 1903. Uber die Öbertriadsche Fauna der Baeninsel. K. Svenka Vetenskaps-Akademiens Handlingar, 37, 76 p.Google Scholar
Carter, J. G. 1990a. Evolutionary significance of shell microstructure in the Palaeotaxodonta, Pteriomorphia, and Isofilibranchia (Bivalvia: Mollusca), p. 135296. In Carter, J. G. (ed.), Skeletal Biomineralization, Vols. 1, 2. Von Nostrand Reinhold, New York.Google Scholar
Carter, J. G. 1990b. Shell microstructural data for the Bivalvia; Pt 4, Order Ostreoida, p. 347362. In Carter, J. G. (ed.), Skeletal Biomineralization, Vols. 1, 2. Von Nostrand Reinhold, New York.Google Scholar
Chen, C-C. 1976. In Nanjing Institute of Geology and Palaeontology, Academia Sinica (eds.), Lamellibranch Fossils of China. Science Press, Beijing, 522 p.Google Scholar
Chong, G. D., and von Hillebrandt, A. 1985. El Triassico preandino de Chile entre los 23° 30′ Y 26° 00′ de lat. sur. IV Congreso Geologico Chileno 1985, Universidad del Norte-Antofagasta, Toma I:162210.Google Scholar
Detterman, R. L., Reiser, H. N., Brogé, W. P., and Dutro, J. T. Jr. 1975. Post Carboniferous stratigraphy, northeastern Alaska. U.S. Geological Survey Professional Paper 886, 46 p.Google Scholar
Férussac, A. E. 1822. Tableaux Systématiques des Animaux Mollusques. Paris, 111 p.Google Scholar
Follo, M.In press. Sedimentology and stratigraphy of the Martin Bridge Limestone and Hurwal Formation (Late Triassic–Early Jurassic) from the Wallowa terrane, Oregon. U.S. Geological Survey Professional Paper.Google Scholar
Hallam, A. 1968. Morphology, paleoecology and evolution of the genus Gryphaea in the British Lias. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 254:91128.Google Scholar
Hallam, A. 1982. Patterns of speciation in Jurassic Gryphaea. Paleobiology, 8:354366.Google Scholar
Hallam, A. 1983. Early and Mid Jurassic molluscan biogeography and the establishment of central Atlantic Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 43:181193.Google Scholar
Hallam, A. 1986. Evidence of displaced terranes from Permian to Jurassic faunas around the Pacific Margin. Journal of the Geological Society of London, 143:209216.Google Scholar
Hallam, A. 1990. The end-Triassic extinction event. Geological Society of America Special Paper, 247:577583.Google Scholar
Hallam, A., and Gould, S. J. 1975. The evolution of British and American Middle and Upper Jurassic Gryphaea: a biometric study. Proceedings of the Royal Society of London, Series B, Biological Sciences, 189:354542.Google Scholar
Harry, H. W. 1986. The relevancy of the generic concept to the geographic distribution of living oysters (Gryphaeidae and Ostreidae). American Malacological Bulletin, 4:157162.Google Scholar
Hayami, I., Maeda, S., and Fuller, C. R. 1977. Some Late Triassic Bivalvia and Gastropoda from the Domeyko Range of North Chile. Transactions and Proceedings, Palaeontological Society of Japan, N.S., 108:202221.Google Scholar
Hillhouse, J. W., Grommé, C. S., and Vallier, T. L. 1982. Paleomagnetism and Mesozoic tectonics of the Seven Devils volcanic arc in northeastern Oregon. Journal of Geophysical Research, 87:37773794.Google Scholar
Johnson, A. L. A., and Lennon, C. D. 1990. Evolution of gryphaeate oysters in the mid-Jurassic of western Europe. Palaeontology, 33:453485.Google Scholar
Jones, D. L., Silberling, N. J., Coney, P. J., and Plafker, G. 1987. Lithotectonic terrane map of Alaska (west of the 141st Meridian). U.S. Geological Survey Miscellaneous Map Series, Map MF-1874-A.Google Scholar
Kittl, E. 1907. Die Triasfossilien vom Heureka Sund. Report of the second Norwegian expedition in the “Farm” 1898–1902, No. 7, 44 p.Google Scholar
Kiparisova, L. 1936. Upper Triassic pelecypods from the Kolyma-Indigirka Land. Transactions of the Arctic Institute, 30:71136[in Russian with English summary].Google Scholar
Kiparisova, L. 1938. Pelecypoda of the Triassic System of USSR. Central Geological and Prospecting Institute, Paleontology of USSR Monographs, 47, 42 p. [in Russian with English summary].Google Scholar
Kiparisova, L., Bychkov, Y. M., and Polubotko, I. V. 1966. Upper Triassic bivalve molluscs from the northeast USSR. Vsesoyuznyy nauchno-issledovatel'skii instituta (VSEGEI). Magadan, 312p. [in Russian].Google Scholar
Kristan-Tollmann, E. 1987. Triassic of the Tethys and its relationship with the Triassic of the Pacific Realm, p. 169186. In McKenzie, K. G. (ed.), Shallow Tethys. Proceedings of the International Symposium on the Shallow Tethys 2. Balkena, Rotterdam.Google Scholar
Kristan-Tollmann, E., and Tollmann, A. 1983. Tethys-Faunenelemente in der Trias der USA. Mitteilungen der Gesellschaft der Geology und Bergaustudenten in Österreich, 75:213272.Google Scholar
LaBarbara, M. 1981. The ecology of Mesozoic Gryphaea, Exogyra, and Ilymatogyra (Bivalvia, Mollusca) in a modern ocean. Paleobiology, 7:510–281.Google Scholar
Lamarck, J. B. 1801. Systeme des animaux sans vertebres. Paris, 432 p.Google Scholar
May, S. R., and Butler, R. F. 1986. North American Jurassic apparent polar wander: implications for plate motion, paleogeography and Cordilleran tectonics. Journal of Geophysical Research, 91:1151911544.Google Scholar
McLearn, F. H. 1937. New species from the Triassic Schooler Creek Formation. The Canadian Field-Naturalist, 51:9698.Google Scholar
McLearn, F. H. 1946. Upper Triassic faunas in the Halfway, Sikanni Chief, and Prophet River basins, northeast British Columbia. Geological Survey of Canada Paper, 46–25:9598.Google Scholar
McLearn, F. H. 1947. Upper Triassic faunas of Pardonet Hill, Peace River foot-hills, British Columbia. Geological Survey of Canada Paper, 47–14:116.Google Scholar
McRoberts, C. A. 1990. Systematic Paleontology, stratigraphic occurrence and paleoecology of halobiid bivalves from the Martin Bridge Limestone (Upper Triassic), Wallowa terrane, Oregon. Unpubl. , University of Montana, Missoula, 163 p.Google Scholar
Monger, J. W. H., and Berg, H. C. 1987. Lithotectonic terrane map of western Canada and southeastern Alaska. U.S. Geological Survey, Miscellaneous Field Studies, Map MF-1874-B.Google Scholar
Muller, S. W., and Ferguson, H. G. 1939. Mesozoic stratigraphy of the Hawthorne and Tonopah quadrangles, Nevada. Geological Society of America Bulletin, 50:15731624.Google Scholar
Newell, N. D. 1960. The origin of the oysters. 21st International Geological Congress, Report Part 22:8186.Google Scholar
Newell, N. D., and Boyd, D. W. 1970. Oyster-like Permian Bivalvia. Bulletin of the American Museum of Natural History, 134:217282.Google Scholar
Newell, N. D., and Boyd, D. W. 1989. Phylogenetic implications of shell microstructure in the Pseudomonotidae, extinct Bivalvia. American Museum Novitates, 2933:112.Google Scholar
Newton, C. R. 1986. Late Triassic bivalves of the Martin Bridge Limestone, Hells Canyon, Oregon: taphonomy, paleoecology, paleozoology, p. 722. In Vallier, T. L., and Brooks, H. C. (eds.), Geology of the Blue Mountains Region of Oregon, Idaho, and Washington. U.S. Geological Survey Professional Paper 1435.Google Scholar
Newton, C. R. 1987. Biogeographic complexity in Triassic bivalves of the Wallowa terrane, northwestern United States: oceanic islands, not continents, provide the best analogues. Geology, 15:11261129.Google Scholar
Newton, C. R. 1988. Significance of “Tethyan” fossils in the Cordillera. Science, 242:385391.CrossRefGoogle ScholarPubMed
Newton, C. R., Whalen, M. T., Thompson, J. B., Prins, N., and Delalla, D. 1987. Systematics and paleoecology of Norian (Late Triassic) bivalves from a tropical island arc: Wallowa Terrane, Oregon. The Paleontological Society Memoir 22, 83 p.Google Scholar
Nicol, D. 1967. Some characteristic of cold-water pelecypods. Journal of Paleontology, 41:13301340.Google Scholar
Palmer, C. P. 1989. Larval shells of four Jurassic bivalve molluscs. Bulletin of the British Museum of Natural History (Geology), 45:5760.Google Scholar
Patte, E. 1926. Études paléontologiques à la géologie de l'Est du Tonkin (Paléozoique et Trias). Bulletin du Service Géologique de l'Indochine, 15, 241 p.Google Scholar
Ross, C. P. 1938. The geology of part of the Wallowa Mountains. Oregon Department of Geology and Mineral Resources Bulletin 7, 74 p.Google Scholar
Scalia, S. 1912. La fauna del Trias Superiore del Gruppo di Monte Judica, part 2. Accademia Gioenia dell Scienze Naturali di Catania Atti Ano. 89, Series 5, Vol. 5, Memoir 8, 58 p.Google Scholar
Sheltema, R. S. 1977. Dispersal of marine invertebrate organisms: paleogeographic and biostratigraphic implications, p. 73108. In Kauffman, E., and Hazel, J. (eds.), Concepts and Methods of Biostratigraphy. Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania.Google Scholar
Silberling, N. J. 1985. Biogeographic significance of the Upper Triassic bivalve Monotis in circum-Pacific accreted terranes, p. 6370. In Howell, D. G. (ed.), Tectonostratigraphic Terranes of the Circum-Pacific Region. Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, 1.Google Scholar
Silberling, N. J. 1990. Allochthonous terranes of western Nevada: current status. Programs with Abstracts Geology and Ore Deposits of the Great Basin, Reno/Sparks, Nevada, 1990, p. 101.Google Scholar
Silberling, N. J., and Tozer, E. T. 1968. Biostratigraphic classification of the Marine Triassic of North America. Geological Society of America Special Paper 110, 63 p.Google Scholar
Silberling, N. J., Jones, D. L., Blake, M. C. Jr., and Howell, D. G. 1987. Lithotectonic terranes of the western conterminous United States. U.S. Geological Survey Miscellaneous Field Studies Map MF-1874-C.Google Scholar
Simms, M. J., and Ruffell, A. H. 1990. Climatic and biotic change in the late Triassic. Journal of the Geological Society, London, 147:321327.Google Scholar
Smith, J. P. 1927. Upper Triassic marine invertebrate faunas of North America. U.S. Geological Survey Professional Paper 141, 216 p.Google Scholar
Stanley, G. D. Jr. 1979. Paleoecology, structure and distribution of Triassic coral buildups in western North America. University of Kansas Paleontological Contribution, 65:168.Google Scholar
Stanley, G. D. Jr. 1986. Late Triassic coelenterate faunas of western Idaho and northeastern Oregon, p. 2340. In Vallier, T. L. and Brooks, H. C. (eds.), Geology of the Blue Mountains region of Oregon, Idaho, and Washington. U.S. Geological Survey Professional Paper 1435.Google Scholar
Stanley, G. D. Jr. 1988. The history of early Mesozoic reef communities: a three step process. Palaios, 3:170183.Google Scholar
Stanley, G. D. Jr., and Beauvais, L. 1990. Middle Jurassic corals from the Wallowa terrane, west-central Idaho. Journal of Paleontology, 64:352362.Google Scholar
Stanley, G. D. Jr., and Cairns, S. D. 1988. Constructional azooxanthellate coral communities: an overview with implications for the fossil record. Palaios, 3:233242.Google Scholar
Stanley, G. D. Jr., and Whalen, M. T. 1989. Triassic corals and spongiomorphs from Hells Canyon, Wallowa terrane, Oregon. Journal of Paleontology, 63:800819.Google Scholar
Stenzel, H. B. 1971. Oysters, p. N953N1224. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt N, Vol. 3 (Bivalvia). University of Kansas and the Geological Society of America, Lawrence.Google Scholar
Tollmann, A., and Kristan-Tollmann, E. 1985. Paleogeography of the European Tethy from Paleozoic to Mesozoic and the Triassic relations of the eastern part of Tethys and Panthalassa, p. 322. In Nakazawa, K. and Dickins, J. M. (eds.), The Tethys. Her Paleogeography and Paleobiogeography from Paleozoic to Mesozoic. Takai University Press, Tokyo.Google Scholar
Tozer, E. T. 1961. Triassic stratigraphy and faunas, Queen Elizabeth Islands, Arctic Archipelago. Geologic Survey of Canada Memoir 316, 116 p.Google Scholar
Tozer, E. T. 1982. Marine Triassic faunas of North America; their significance for assessing plate and terrane movements. Geologische Rundschau, 7:10771104.Google Scholar
Tozer, E. T., and Thorsteinsson, R. 1968. Western Queen Elizabeth Island, Arctic Archipelago. Geological Survey of Canada Memoir 332, 224 p.Google Scholar
Trueman, A. E. 1922. The use of Gryphaea in the correlation of the Lower Lias. Geological Magazine, 59:256268.Google Scholar
Vyalov, O. S. 1936. Sur la classification des huitres. Academie des Sciences d'URSS, comptes rendus (Doklady) new series, Vol. 4(13), no. 1(105):1720.Google Scholar
Vyalov, O. S. 1946. Triasovi ustritsi SRSR [Triassic oysters from SRSR]. Lvovskogo Derzhaunogo Universitet Ivana Franka naukovi zapiski, Vol. 2, series geology, no. 3, p.2254[in Russian].Google Scholar
Waller, T. R. 1978. Morphology, morphoclines, and a new classification of the Pteriomorphia. Philosophical Transactions of the Royal Society of London, B, 284:345365.Google Scholar
Waller, T. R. 1981. Functional morphology and development of veliger larvae of the European oyster Ostrea edulis Linne. Smithsonian Contributions to Zoology, 328, 70 p.Google Scholar
Westermann, G. E. G. 1962. Succession and variation of Monotis and the associated fauna in the Norian Pine River Bridge section, British Columbia (Triassic, Pelecypoda). Journal of Paleontology, 36:754792.Google Scholar
White, J. D., White, D. L., Vallier, T., Stanley, G. D., and Ash, S.In press. Geologic evolution and paleoenvironments of an intra-arc summit basin in the Blue Mountains Island Arc, Oregon and Idaho. Geological Society of America Bulletin.Google Scholar
Zardini, R. 1981. Fossili Cassiani (Trias Medio-Superiore), Atlante dei Bivalvi della Formazione di S. Cassiano Raccoiti Nella Regione Dolomitica Attorno a Cortina d'Ampezzo. Edizione Ghedina, 32043, Cortina di Ampezzo, Via Verocai 47, 16 p.Google Scholar
Zeuner, F. 1933. Lage der Gryphaea arcuata im sediment. Zentralblat fur Mineralogie, Geologie, und Palaeontologie, Abteilung B, Jahrgang, 1933:568574.Google Scholar