Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T22:11:16.379Z Has data issue: false hasContentIssue false

An analytical solution to the Boltzmann–Fokker–Planck equation for multi-component non-homogeneous plasmas

Published online by Cambridge University Press:  13 March 2009

D. Zoler
Affiliation:
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
S. Cuperman
Affiliation:
Space Environment Laboratory, NOAA/ERL, Boulder, U.S.A.

Abstract

The previously obtained analytical solution to the Boltzmann equation for nonhomogeneous plasmas with relative large temperature and density gradients is generalized in the following sense. (i) The relatively simple Bhatnagar, Gross and Krook collision operator is replaced by the Fokker-Planck operator expressed in terms of relaxation rates (slowing down, energy exchange, etc.). (ii) The simple Lorentzian plasma model is replaced by a multi-component plasma model with realistic masses and temperatures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhatnagar, P., Gross, E. & Krook, M. 1954 Phys. Rev. 94, 511.CrossRefGoogle Scholar
Campbell, P. M. 1984 Phys. Rev. A 30, 365.CrossRefGoogle Scholar
Campbell, P. M. 1986 Fusion Technol. 9, 391.CrossRefGoogle Scholar
Cuperman, S. & Zoler, D. 1988 J. Plasma Phys. 40, 441.CrossRefGoogle Scholar
Gross, E. & Krook, M. 1956 Phys. Rev. 102, 593.CrossRefGoogle Scholar
Hinton, F. L. 1983 Basic Plasma Physics I (ed. Galeev, A. A. & Sudan, R. N.). North-Holland.Google Scholar
Levermore, C. D. & Pomraning, G. C. 1981 Astrophys. J. 248, 321.CrossRefGoogle Scholar
Livi, S. & Marsch, E. 1986 Phys. Rev. A 34, 533.CrossRefGoogle Scholar
Montgomery, D. C. & Tidman, D. A. 1964 Plasma Kinetic Theory. McGraw-Hill.Google Scholar
Rosenbluth, M., MacDonald, W. M. & Judd, D. L. 1957 Phys. Rev. 107, 1.CrossRefGoogle Scholar
Spitzer, L. 1962 Physics of Fully Ionized Gases, chap. 5. Interscience.Google Scholar
Spitzer, L. & Härm, R. 1953 Phys. Rev. 89, 977.CrossRefGoogle Scholar