Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T16:13:54.014Z Has data issue: false hasContentIssue false

An iterative approach to an arbitrarily short-wavelength solver in global gyrokinetic simulations

Published online by Cambridge University Press:  26 February 2019

Alexey Mishchenko*
Affiliation:
Max Planck Institute for Plasma Physics, D-17491 Greifswald, Germany
Roman Hatzky
Affiliation:
Max Planck Institute for Plasma Physics, D-85748 Garching, Germany
Eric Sonnendrücker
Affiliation:
Max Planck Institute for Plasma Physics, D-85748 Garching, Germany
Ralf Kleiber
Affiliation:
Max Planck Institute for Plasma Physics, D-17491 Greifswald, Germany
Axel Könies
Affiliation:
Max Planck Institute for Plasma Physics, D-17491 Greifswald, Germany
*
Email address for correspondence: alexey.mishchenko@ipp.mpg.de

Abstract

An iterative formulation of an arbitrarily short-wavelength solver for global gyrokinetic simulations is suggested. The solver is verified against solutions of the dispersion relation. It can be used to treat the nonlinear polarisation density which is important at the plasma edge. In the linear case, the solver is shown to be computationally efficient.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angus, J. & Umansky, M. 2014 Modeling of large amplitude plasma blobs in three-dimensions. Phys. Plasmas 21 (1), 012514+8.Google Scholar
Berk, H., Mett, R. & Lindberg, D. 1993 Arbitrary mode number boundary-layer theory for nonideal toroidal Alfvén modes. Phys. Fluids B 5, 39693996.Google Scholar
Brizard, A. J. & Hahm, T. S. 2007 Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421468.Google Scholar
Brizard, A. 2010 Exact energy conservation laws for full and truncated nonlinear gyrokinetic equations. Phys. Plasmas 17 (4), 042303+11.Google Scholar
Connor, J., Hastie, R. J. & Zocco, A. 2012 Unified theory of the semi-collisional tearing mode and internal kink mode in a hot tokamak: implications for sawtooth modelling. Plasma Phys. Control. Fusion 54, 035003+18.Google Scholar
Dominski, J., Brunner, S., Görler, T., Jenko, F., Told, D. & Villard, L. 2015 How non-adiabatic passing electron layers of linear microinstabilities affect turbulent transport. Phys. Plasmas 22 (6), 062303+20.Google Scholar
Dominski, J., McMillan, B., Brunner, S., Merlo, G., Tran, T. & Villard, L. 2017 An arbitrary wavelength solver for global gyrokinetic simulations. Application to the study of fine radial structures on microturbulence due to non-adiabatic passing electron dynamics. Phys. Plasmas 24 (2), 022308+24.Google Scholar
Fivaz, M., Brunner, S., de Ridder, G., Sauter, O., Tran, T., Vaclavik, J., Villard, L. & Appert, K. 1998 Finite element approach to global gyrokinetic particle-in-cell simulations using magnetic coordinates. Comput. Phys. Commun. 111 (1), 2747.Google Scholar
Hasegawa, A. & Chen, L. 1976 Kinetic processes in plasma heated by resonant mode conversion of Alfvén wave. Phys. Fluids 19, 19241934.Google Scholar
Howard, N., Holland, C., White, A., Greenwald, M. & Candy, J. 2014 Synergistic cross-scale coupling of turbulence in a tokamak plasma. Phys. Plasmas 21 (11), 112510+6.Google Scholar
Idomura, Y. 2012 Accuracy of momentum transport calculations in full-f gyrokinetic simulations. Comput. Sci. Disc. 5 (1), 014018+12.Google Scholar
Jolliet, S., Bottino, A., Angelino, P., Hatzky, R., Tran, T. M., McMillan, B. F., Sauter, O., Appert, K., Idomura, Y. & Villard, L. 2007 A global collisionless PIC code in magnetic coordinates. Comput. Phys. Commun. 177, 409425.Google Scholar
Kendl, A. 2015 Inertial blob-hole symmetry breaking in magnetised plasma filaments. Plasma Phys. Control. Fusion 57 (4), 045012+7.Google Scholar
Lin, Z. & Lee, W. 1995 Method for solving the gyrokinetic poisson equation in general geometry. Phys. Rev. E 52, 56465652.Google Scholar
McMillan, B., Jolliet, S., Bottino, A., Angelino, P., Tran, T. & Villard, L. 2010 Rapid Fourier space solution of linear partial integro-differential equations in toroidal magnetic confinement geometries. Comput. Phys. Commun. 181 (4), 715719.Google Scholar
Mishchenko, A. & Brizard, A. 2011 Higher-order energy-conserving gyrokinetic theory. Phys. Plasmas 18 (2), 022305+13.Google Scholar
Mishchenko, A., Hatzky, R. & Könies, A. 2006 Global linear gyrokinetic particle-in-cell simulations of fine-scale modes in a tokamak. AIP Conf. Proc. 871, 394399.Google Scholar
Mishchenko, A., Könies, A. & Hatzky, R. 2005 Particle simulations with a generalized gyrokinetic solver. Phys. Plasmas 12, 062305+10.Google Scholar
Mishchenko, A., Könies, A. & Hatzky, R. 2011 Global particle-in-cell simulations of plasma pressure effects on Alfvénic modes. Phys. Plasmas 18, 012504+9.Google Scholar
Mishchenko, A., Könies, A. & Hatzky, R. 2014 Gyrokinetic particle-in-cell simulations of Alfvén eigenmodes in presence of continuum effects. Phys. Plasmas 21, 052114+8.Google Scholar
Mishchenko, A. & Zocco, A. 2012 Global gyrokinetic particle-in-cell simulations of internal kink instabilities. Phys. Plasmas 19, 122104+9.Google Scholar
Mishchenko, A., Zocco, A., Helander, P. & Könies, A. 2018 Gyrokinetic stability of electron–positron–ion plasmas. J. Plasma Phys. 84 (1), 905840116+20.Google Scholar
Porcelli, F. 1991 Collisionless $m=1$ tearing mode. Phys. Rev. Lett. 66, 425428.Google Scholar
Rosenbluth, M., Berk, H., Van Dam, J. & Lindberg, D. 1992 Mode structure and continuum damping of high-n toroidal Alfvén eigenmodes. Phys. Fluids B 4, 21892202.Google Scholar
Wiesenberger, M., Madsen, J. & Kendl, A. 2014 Radial convection of finite ion temperature, high amplitude plasma blobs. Phys. Plasmas 21 (9), 092301+11.Google Scholar
Yu, G. Q., Krasheninnikov, S. I. & Guzdar, P. N. 2006 Two-dimensional modelling of blob dynamics in tokamak edge plasmas. Phys. Plasmas 13 (4), 042508+8.Google Scholar
Zacharias, O., Kleiber, R. & Hatzky, R. 2012 Gyrokinetic simulations of collisionless tearing modes. J. Phys.: Conf. Ser. 401 (1), 012026+8.Google Scholar