Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T10:55:13.011Z Has data issue: false hasContentIssue false

Analysis of electromagnetic instabilities parallel to the magnetic field

Published online by Cambridge University Press:  13 March 2009

W. Pilipp
Affiliation:
Max-Planck-Institut für Physik und Astrophysik, Institut fü Extraterrestrische Physik, 8046 Garching bei München, Germany
H. J. Völk
Affiliation:
Max-Planck-Institut für Physik und Astrophysik, Institut fü Extraterrestrische Physik, 8046 Garching bei München, Germany

Extract

Transverse waves and instabilities propagating along the magnetic field in a homogeneous plasma are discussed analytically and numerically for frequencies of the order of the ion cyclotron frequency and below. The free energy driving the instabilities is assumed to be provided by thermal anisotropies, with the parallel temperature exceeding the perpendicular temperature, a situation appropriate to the solar wind near the earth and to the downstream conditions in collisionless shocks propagating approximately parallel to the magnetic field. It is shown that in the case where the ion β is of order one the long wavelength Firehose instability is not stabilized by finite Larmor radius effects, but that for smaller wavelengths it goes over smoothly into the resonant proton mode, discussed by Kennel & Scarf (1968).

Type
Articles
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham-Shrauner, B. 1970 Phys. Fluids 13, 837.CrossRefGoogle Scholar
Davidson, R. C. & Völk, H. J. 1968 Phys. Fluids 11, 2259.CrossRefGoogle Scholar
Eviatar, A. & Schulz, M. 1970 Planet. Space Sci. 18, 321.CrossRefGoogle Scholar
Forsluno, V. 1969 J. Geophys. Res. 74, 355.Google Scholar
Forslund, D. W. 1970 J. Geophys. Res. 75, 17.CrossRefGoogle Scholar
Hollweg, J. V. 1970 J. Geophys. Res. 75, 2403.CrossRefGoogle Scholar
Hollweg, J. V. & Völk, H. J. 1970 a Nature, Lond. 225, 441.CrossRefGoogle Scholar
Hollweg, J. V. & Völk, H. J. 1970 b J. Geophysic. Res. 75, 5297.CrossRefGoogle Scholar
Hundhausen, A. J. & Völk, H. J. 1971 Energy and momentum exchange in transverse Plasma waves. (To be published.)Google Scholar
Hundhausen, A. J. 1968 Space Sci. Rev. 8, 690.CrossRefGoogle Scholar
Hundhausen, A. J. 1970 Preprint LA-DC-11068.Google Scholar
Hundhausen, A. J., Asbridge, J. R., Bame, S. J., Gilbert, H. E. & Strong, I. B. 1967 a J. Geophys. Res. 72, 87.CrossRefGoogle Scholar
Hundhausen, A. J., Bame, S. J., Asbridge, J. R. & Sydoriak, S. J. 1970 J. Geophys. Res. 75, 4643.CrossRefGoogle Scholar
Hundhausen, A. J., Bame, S. J. & Ness, N. F. 1967 b J. Geophys. Res. 72, 5265.CrossRefGoogle Scholar
Jockers, K. 1970 Astron. Astrophys. 6, 219.Google Scholar
Kennel, C. F. & Sagdeev, R. Z. 1967 J. Geophys. Res. 72, 3303.CrossRefGoogle Scholar
Kennell, C. F. & Scarf, F. L. 1968 J. Geophys. Res. 73, 6149.CrossRefGoogle Scholar
Montgomery, M. D., Bame, S. J. & Hundhausen, A. J. 1968 J. Geophys. Res. 73, 4999.CrossRefGoogle Scholar
Parker, E. N. 1958 Phys. Rev. 109, 1874.CrossRefGoogle Scholar
Scarf, F. L., Wolfe, J. H. & Siliva, R. W. 1967 J. Geophys. Res. 72, 993.CrossRefGoogle Scholar
Shapiro, V. D. & Shevchenko, V. I. 1964 Soy. Physics, JETP 18, 1109.Google Scholar
Shapiro, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
, H. J. & Davidson, R. C. 1970 Phys. Fluids 13, 839.Google Scholar