Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T22:56:40.115Z Has data issue: false hasContentIssue false

Applicability of Child–Langmuir collision laws for describing a dc cathode sheath in N2O

Published online by Cambridge University Press:  13 December 2013

V. A. Lisovskiy*
Affiliation:
Kharkov National University, Svobody Sq. 4, Kharkov, Ukraine61022 Scientific Center of Physical Technologies, Svobody Sq., 6, Kharkov, Ukraine61022
E. P. Artushenko
Affiliation:
Kharkov National University, Svobody Sq. 4, Kharkov, Ukraine61022 Scientific Center of Physical Technologies, Svobody Sq., 6, Kharkov, Ukraine61022
V. D. Yegorenkov
Affiliation:
Kharkov National University, Svobody Sq. 4, Kharkov, Ukraine61022
*
Email address for correspondence: lisovskiy@yahoo.com

Abstract

It is established which of the Child–Langmuir collision law versions are most appropriate for describing the processes in the cathode sheath in the N2O. At low pressure (up to 0.3 Torr), the Child–Langmuir law version relating to the constant ion mobility holds. At N2O pressure values starting from 0.75 Torr and above, one has to employ the law version for which it is assumed that the ion mean free path within the cathode sheath is constant. In the intermediate pressure range (between 0.3 and 0.75 Torr), neither of the Child–Langmuir law versions gives a correct description of the cathode sheath of the glow discharge in the N2O.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allan, M. and Skalicky, T. 2003 Structures in elastic, vibrational, and dissociative electron attachment cross sections in N2O near threshold. J. Phys. B: At. Mol. Opt. Phys. 36, 3397.Google Scholar
Alonso, J. C., Ortiz, A., Falcony, C. and García, M. 1995 Effect of the predecomposition of SiF4 on the properties of silicon dioxide deposited at low temperatures using SiF4/SiH4/N2O in a double plasma process. J. Vac. Sci. Technol. A 13, 244.Google Scholar
Barozzi, M., Vanzetti, L., Iacob, E., Bersani, M., Anderle, M., Pucker, G., Kompocholis, C., Ghulinyan, M. and Bellutti, P. 2008 Multilayer silicon rich oxy-nitride films characterization by SIMS, VASE and AFM. J. Phys. Conf. Ser. 100, 012016.Google Scholar
Cantarel, A., Bloor, J. M. G. and Soussana, J.-F. 2009 Impacts of climate change factors (temperature, drought, elevated CO2) on CO2, N2O and CH4 fluxes in an upland grassland. IOP Conf. Ser.: Earth Environ. Sci. 6, 242044.Google Scholar
Carter, M. S., Albert, K. and Ambus, P. 2009 Is organic farming a mitigation option? A study on N2O emission from winter wheat. IOP Conf. Ser.: Earth Environ. Sci. 6, 242011.Google Scholar
Chakraborty, S., Yoshida, T., Hashizume, T., Hasegawa, H. and Sakai, T. 1998 Formation of ultrathin oxynitride layers on Si (100) by low-temperature electron cyclotron resonance N2O plasma oxynitridation process. J. Vac. Sci. Technol. B 16, 2159.Google Scholar
Child, C. D. 1911 Discharge from hot CaO. Phys. Rev. 32, 492.Google Scholar
Dao, V.-A., Nguyen, V.-D., Heo, J., Choi, H., Kim, Y., Lakshminarayan, N. and Yi, J. 2010 Effect of N2O/SiH4 flow ratios on properties of amorphous silicon oxide thin films deposited by inductively-coupled plasma chemical vapor deposition with application to silicon surface passivation. Vacuum 84, 410.Google Scholar
Despax, B., Yousfi, M., Younis, G. and Caquineau, H. 2005 Power dissipation analysis in N2O/He RF discharges using particle modelling. J. Phys. D: Appl. Phys. 38, 4290.CrossRefGoogle Scholar
Dutton, J., Harris, F. M. and Hughes, D. B. 1975 Ionization, electron-attachment and negative-ion reactions in N2O. J. Phys. B: Atom. Mol. Phys. 8, 313.Google Scholar
Kim, S., Kim, J., Choi, J., Kang, H., Jeon, H. and Bae, Ch. 2006 Characteristics of HfO2 thin films deposited by plasma-enhanced atomic layer deposition using O2 plasma and N2O plasma. J. Vac. Sci. Technol. B 24, 1088.Google Scholar
Kline, L. E., Partlow, W. D., Young, R. M., Mitchell, R. R. and Congedo, T. V. 1991 Diagnostics and modeling of RF discharge dissociation in N2O. IEEE Trans. Plasma Sci. 19, 278.Google Scholar
Kouznetsov, I. G., Lichtenberg, A. J. and Lieberman, M. A. 1996 Modelling electronegative discharges at low pressure. Plasma Sources Sci. Technol. 5, 662.Google Scholar
Langmuir, I. 1913 The effect of space charge and residual gases on thermionic currents in high vacuum. Phys. Rev. 2, 450.CrossRefGoogle Scholar
Langmuir, I. 1923 The effect of space charge and initial velocities on the potential distribution and thermionic current between parallel plane electrodes. Phys. Rev. 21, 419.Google Scholar
Langmuir, I. 1929 The interaction of electron and positive ion space charges in cathode sheaths. Phys. Rev. 33, 954.Google Scholar
Lee, D. R., Lucovsky, G., Denker, M. S. and Magee, Ch. 1995 Nitrogen atom incorporation at Si–SiO2 interfaces by a low temperature (300° C), predeposition, remote plasma oxidation using N2O. J. Vac. Sci. Technol. A 13, 1671.Google Scholar
Lieberman, M. A. and Lichtenberg, A. J. 2005 Principles of Plasma Discharges and Materials Processing. Hoboken, NJ: Wiley.Google Scholar
Lisovskiy, V., Booth, J.-P., Landry, K., Douai, D., Cassagne, V. and Yegorenkov, V. 2006 Electron drift velocity in N2O in strong electric fields determined from rf breakdown curves. J. Phys. D: Appl. Phys. 39, 1866.Google Scholar
Lisovskiy, V. and Yegorenkov, V. 2009 Validating the collision-dominated Child–Langmuir law for a dc discharge cathode sheath in an undergraduate laboratory. Eur. J. Phys. 30, 1345.CrossRefGoogle Scholar
Lisovskiy, V., Yegorenkov, V., Artushenko, E., Booth, J.-P., Martins, S., Landry, K., Douai, D. and Cassagne, V. 2013 Normal regime of the weak-current mode of an rf capacitive discharge. Plasma Sources Sci. Technol. 22, 015018.Google Scholar
Markeev, A. M., Chernikova, A. G., Chouprik, A. A., Zaitsev, S. A., Ovchinnikov, D. V., Althues, H. and Dorfler, S. 2013 Atomic layer deposition of Al2O3 and AlxTi1-xOy thin films on N2O plasma pretreated carbon materials. J. Vac. Sci. Technol. A 31, 01A135.Google Scholar
Munoz, J. and Dominguez, C. 1994 N2O plasma etching of polyimides. Vacuum 45, 1101.Google Scholar
Raizer, Y. P. 1991 Gas Discharge Physics. Berlin: Springer.Google Scholar
Rapp, D. and Briglia, D. D. 1965 Total cross sections for ionization and attachment in gases by electron impact. II. Negative-ion formation. J. Chem. Phys. 43, 1480.Google Scholar
Rapp, D. and Englander-Golden, P. 1965 Total cross sections for ionization and attachment in gases by electron impact. I. Positive ionization. J. Chem. Phys. 43, 1464.Google Scholar
Rees, J. A., Greenwood, C. L. and Seymour, D. L. 1999 The energies of positive and negative ions in an RF plasma in nitrous oxide. Jpn. J. Appl. Phys. 38, 4397.Google Scholar
Smith, B. C., Khandelwal, A. and Lamb, H. H. 2000 Ar/N2O remote plasma-assisted oxidation of Si (100): plasma chemistry, growth kinetics, and interfacial reactions. J. Vac. Sci. Technol. B 18, 1757.Google Scholar
Stregack, J. A., Wexler, B. L. and Hart, G. A. 1976 CW CO-CS2, CO-C2H2, and CO-N2O energy-transfer lasers. Appl. Phys. Lett. 28, 137.Google Scholar
Tsai, K.-Ch., Wu, W.-F., Chen, J.-Ch., Pan, T.-J. and Chao, Ch.-G. 2004 Influence of N2O plasma treatment on microstructure and thermal stability of WNx barriers for Cu interconnection. J. Vac. Sci. Technol. B 22, 993.Google Scholar
Webb, C. E. and Jones, J. D. C. 2004 Handbook of Laser Technology and Applications, Volume II: Laser Design and Laser Systems. Bristol: IOP.Google Scholar
Younis, G., Despax, B., Yousfi, M. and Caquineau, H. 2007 Power dissipation analysis in N2O RF discharges using Monte Carlo modeling. J. Phys. D: Appl. Phys. 40, 2045.Google Scholar