Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T11:23:09.478Z Has data issue: false hasContentIssue false

CO2 Laser acceleration of forward directed MeV proton beams in a gas target at critical plasma density

Published online by Cambridge University Press:  27 February 2012

F. TSUNG
Affiliation:
Department of Physics, University of California at Los Angeles, Los Angeles, CA, USA
S. YA. TOCHITSKY
Affiliation:
Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA (sergei12@ucla.edu)
D. J. HABERBERGER
Affiliation:
Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA (sergei12@ucla.edu)
W. B. MORI
Affiliation:
Department of Physics, University of California at Los Angeles, Los Angeles, CA, USA Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA (sergei12@ucla.edu)
C. JOSHI
Affiliation:
Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA (sergei12@ucla.edu)

Abstract

The generation of 1–5 MeV protons from the interaction of a 3 ps TW CO2 laser pulse with a gas target with a peak density around the critical plasma density has been studied by 2D particle-in-cell simulations. The proton acceleration in the preformed plasma with a symmetric, linearly ramped density distribution occurs via formation of sheath of the hot electrons on the back surface of the target. The maximum energy of the hot electrons and, hence, net acceleration of protons is mainly defined by Forward Raman scattering instability in the underdense part of the plasma. Forward directed ion beams from a debris free gaseous target can find an application as a high-brightness ion source-injector to a conventional accelerator operating up to kHz pulse repetition frequency.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, J. C., Heron, A., Guerin, S., Laval, G., Mora, P. and Quesnel, B. 1997 Anomalous absorption of very high-intensity laser pulses propagating through moderately dense plasma. Phys. Rev. Lett. 78, 47654768.Google Scholar
Betti, S., Cecchetti, C. A., Forster, E., Guamucci, A., Giuletti, A., Giuletti, D., Kampfer, T., Koster, P., Labate, L. et al. 2009 On the effect of rear-surface dielectric coatings on laser-driven proton acceleration. Phys. Plasmas 16, 100701.Google Scholar
Bulanov, S. V., Esirkepov, T. Zh., Califano, F., Kato, Y., Liseikina, T. V., Mima, K., Naumova, N. M., Nishihara, K., Pegoraro, F. et al. 2000 Generation of collimated beams of relativistic ions in laser-plasma interactions. JETP Lett. 71, 407411.CrossRefGoogle Scholar
Chen, H., Wilks, S. C., Bonlie, J. D., Liang, E. P., Myatt, J., Price, D. F., Meyerhofer, D. D. and Biesdofer, P. 2009 Relativistic positron creation using ultrintense laser pulses. Phys. Rev. Lett. 102, 105 001.Google Scholar
Clark, E. L., Krushelnick, K., Zepf, M., Beg, F. N., Tatarakis, M., Machacek, A., Santala, M. I., Watts, I., Norreyes, P. A. et al. 2000 Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 16541657.Google Scholar
Cowan, T. E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevich, A. et al. 2004 Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204 801.Google Scholar
Fonseca, R. A., Martins, S. F., Silva, L. O., Tonge, J. W., Tsung, F. S. and Mori, W. B. 2008 One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations. Plasma Phys. Control. Fusion 50, 124 034.Google Scholar
Fuchs, J., Antici, P., D'Humieres, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C. A., Kaluza, M., Malka, V. et al. 2006 Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2, 4854.Google Scholar
Gibbon, P., Jakober, F., Monot, P. and Auguste, T. 1996 Experimental study of relativistic self-focusing and self-channeling of an intense laser pulse in an underdense plasma. IEEE Trans. Plasma Sci. 24, 343350.Google Scholar
Gitomer, S. J., Jones, R. D., Begay, F., Ehler, A. W., Kephart, J. F. and Kristal, R. 1986 Fast ions and hot electrons in the laser-plasma interaction. Phys. Fluids 29, 26792688.Google Scholar
Haberberger, D. H., Tochitsky, S. Ya. and Joshi, C. 2010 Fifteen terawatt picosecond CO2 laser system. Opt. Exp. 18, 1786517875.Google Scholar
Haberberger, D. H., Tochitsky, S. Ya., Fiuza, F., Gong, C., Fonseca, R. A., Silva, L. O., Mori, W. B. and Joshi, C. 2012 Colissionless shocks in a laser produced plasma generate monoenergetic high energy proton beams. Nat. Phys. 8, 9599.Google Scholar
Hao, P.-F., Ding, Y.-T., Yao, Z.-H., He, F. and Zhu, K.-Q. 2005 Size effect on gas flow in micro nozzles. J. Micromech. Microeng. 15, 20692073.Google Scholar
Joshi, C., Richardson, M. C. and Enright, G. D. 1979 Quantitative measurements of fast ions from CO2 laser-produced plasmas. Appl. Phys. Lett. 34, 625627.Google Scholar
Joshi, C., Tajima, T., Dawson, J. M., Baldis, H. A. and Ebrahim, N. A. 1981 Forward Raman scattering and electron acceleration. Phys. Rev. Lett. 47, 12851288.Google Scholar
Krall, J., Ting, A., Esarey, E. and Sprangle, P. 1992 Enhanced acceleration in a self-modulated-laser wake-field accelerator. Phys. Rev. E 48, 21572161.Google Scholar
Krushelnick, K., Clark, E. L., Najmudin, Z., Salvati, M., Santala, M. I., Tatarakis, M. and Dangor, A. E. 1999 Multi-MeV ion production from high-intensity laser interactions with underdense plasmas. Phys. Rev. Lett. 83, 737740.Google Scholar
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. and Bychenkov, V. Yu. 2000 Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 41084111.Google Scholar
Modena, A., Najmudin, Z., Dangor, A. E., Clayton, C. E., Marsh, K. A., Joshi, C., Malka, V., Darrow, C. B., Danson, C. et al. 1995 Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606608.Google Scholar
Noda, A., Nakamura, S., Iwashita, Y., Sakabe, S., Hashida, M., Shirai, T., Shimizu, S., Tongu, H., Ito, H. et al. 2006 Phase rotation scheme of laser-produced ions for reduction of the energy spread. Laser Phys. 16, 647653.Google Scholar
Pogorelsky, I. V., Yakimenko, V., Polyanskiy, M., Schkolnikov, P., Ispiryan, M., Neely, D., McKennna, P., Caroll, D., Najmudin, Z. et al. 2010 Ultrafast CO2 laser technology: application in ion acceleration. NIMP A 620, 6770.Google Scholar
Pukhov, A. and Meyer-ter-Vehn, J. 1996 Relativistic magnetic self-channeling of light in near-critical plasm: three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 39753978.Google Scholar
Robson, L., Simpson, P. T., Clarke, R. J., Ledingham, K. W. D., Lindau, F., Lundh, O., McCanny, T., Mora, P., Neely, D. et al. 2007 Scaling of proton acceleration driven by petawatt-laser-plasma interactions. Nat. Phys. 3, 5862.Google Scholar
Sarkisov, G. S., Bychenkov, V. Yu., Novikov, V. N., Tichonchuk, V. T., Maksimchuk, A., Chen, S.-Y., Wagner, R., Mourou, G. and Umstdter, D. 1999 Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a He gas jet. Phys. Rev. E 59, 70427054.Google Scholar
Schollmeier, M., Becker, S., Geisel, M., Flippo, K. A., Gallard, S. A., Gautier, D. C., Gruner, F., Harres, K., Kimmel, M. et al. 2008 Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices. Phys. Rev. Lett. 101, 055 004.Google Scholar
Schwoerer, H., Pfotenhauer, S., Jackel, O., Amthor, K.-U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K. W. D. and Esirkepov, T. 2005 Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439, 445448.Google Scholar
Semushin, S. and Malka, V. 2001 High density gas jet nozzle design for laser target production. Rev. Sci. Instrum. 72, 29612965.CrossRefGoogle Scholar
Sentoku, Y., Liseikina, T. V., Esirkepov, T. Zh., Califano, F., Naumova, N. M., Ueshima, Y., Vshivkov, V. A., Kato, Y., Mima, K. et al. 2000 High density collimated beams of relativistic ions produced by petawatt laser pulses in plasmas. Phys. Rev. E 62, 72717281.Google Scholar
Snavely, R. A., Key, M. H., Hatchett, S. P., Cowan, T. E., Roth, M., Phillips, T. W., Stoyer, M. A., Henry, E. A., Sangster, T. C. et al. 2000 Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.Google Scholar
Sprangle, P., Tang, C. M. and Esarey, E. 1987 Relativistic self-focusing of short-pulse radiation beams in plasmas. IEEE Trans. Plasma Sci. 15, 145152.Google Scholar
Tochitsky, S. Ya., Narang, R., Filip, C., Clayton, C. E., Marsh, K. A. and Joshi, C. 1999 Generation of 160 ps terawatt-power CO2 laser pulses. Opt. Lett. 24, 17171719.Google Scholar
Tochitsky, S. Ya., Narang, R., Filip, C., Clayton, C. E., Marsh, K. A. and Joshi, C. 2000 Present status and future prospects of high-power CO2 laser research. In: Proc. Int. Conf. Lasers, Albuquerque, NM (ed. Corcoran, V. J.). McLean, VA: STS Press, December 4–8, pp. 417424.Google Scholar
Valeo, E. J. and Estabrook, K. G. 1975 Stability of the critical surface in irradiated plasma. Phys. Rev. Lett. 34, 10081011.Google Scholar
Weibel, E. W. 1959 Spontaneous growing transverse waves in a plasma due to anisotropic velocity distribution. Phys. Rev. Lett. 2, 8384.Google Scholar
Wilks, S. C., Kruer, W. L., Tabak, M. and Langdon, A. B. 1992 Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.Google Scholar
Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennigton, D., MacKinnon, A. et al. 2001 Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.Google Scholar
Willingale, L., Mangles, S. P., Nilson, P. M., Clarke, R. J., Dangor, A. E., Kaluza, M. C., Karsh, S., Lancaster, K. L., Mori, W. B. et al. 2006 Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma. Phys. Rev. Lett. 96, 245 002.Google Scholar
Young, P. E., Foord, M. E., Hammer, J. H., Kruer, W. L., Tabak, M. and Wilks, S. C. 1995 Time-dependent channel formation in a laser-produced plasma. Phys. Rev. Lett. 75, 10821085.Google Scholar