Published online by Cambridge University Press: 13 March 2009
The transport theory of a high-energy ion species injected isotropically in a magnetized plasma is considered for arbitrary ratios of the high-energy ion cyclotron frequency to the collisional slowing down time. The assumptions of (i) low fractional density of the high-energy species and (ii) average ion speed faster than the thermal ions and slower than the electrons are used to decouple the kinetic equation for the high-energy species from the kinetic equations for background ions and electrons. The kinetic equation is solved by a Chapman–Enskog expansion in the strength of the gradients; an equation for the first correction to the lowest-order distribution function is obtained without scaling a priori the collision frequency with respect to the gyrofrequency. Various transport coefficients are explicitly calculated for the two cases of a weakly and a strongly magnetized plasma.