Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T17:50:20.062Z Has data issue: false hasContentIssue false

Contribution of higher-order nonlinearity to nonlinear ion-acoustic waves in a weakly relativistic warm plasma. Part 1. Isothermal case

Published online by Cambridge University Press:  13 March 2009

S. K. El-Labany
Affiliation:
Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt

Abstract

The contribution of higher-order nonlinearity to nonlinear ion-acoustic waves in a weakly relativistic plasma consisting of warm ion-fluid and hot isothermal electrons is investigated using reductive perturbation theory. A Korteweg-de Vries-type equation, with temperature- and relativistic-parameter-dependent coefficients is obtained. The renormalization method is applied to the equations obtained from the different orders of perturbation theory to obtain a stationary solution. Relativistic cold and non-relativistic warm plasma limits are considered in order to make comparisons with previous results.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arons, J. 1979 Space Sci. Rev. 24, 417.CrossRefGoogle Scholar
Chian, A. C. & Clemmow, P. C. 1979 J. Plasma Phys. 14, 505.CrossRefGoogle Scholar
Das, G. C. 1977 Plasma Phys. 19, 363.CrossRefGoogle Scholar
Das, G. C. & Paul, S. N. 1985 Phys. Fluids 28, 823.CrossRefGoogle Scholar
Ichikawa, Y. H., Mitsuhashi, T. & Konno, K. 1976 J. Phys. Soc. Japan 41, 1382.CrossRefGoogle Scholar
Infeld, E. & Rowlands, G. 1990 Nonlinear Waves, Solitons and Chaos. Cambridge University Press.Google Scholar
Kodama, Y. & Taniuti, T. 1978 J. Phys. Soc. Japan 45, 298.CrossRefGoogle Scholar
Lai, C. S. 1979 Can. J. Phys. 57, 490.CrossRefGoogle Scholar
Nejoh, Y. 1987a J. Plasma Phys. 37, 487.CrossRefGoogle Scholar
Nejoh, Y. 1987b J. Plasma Phys. 38, 439.CrossRefGoogle Scholar
Pakira, G. P., Chowdhury, A. R. & Paul, S. N. 1988 J. Plasma Phys. 40, 359.CrossRefGoogle Scholar
Shukla, P. K., Yu, M. Y. & Tsintadze, N. L. 1984 Phys. Fluids 27, 327.CrossRefGoogle Scholar
Tagere, S. G. 1973 Plasma Phys. 15, 1247.CrossRefGoogle Scholar
Tagare, S. G. 1986 J. Plasma Phys. 36, 301.CrossRefGoogle Scholar
Tagare, S. G. & Reddy, R. V. 1986 J. Plasma Phys. 35, 219.CrossRefGoogle Scholar
Tappert, F. D. 1972 Phys. Fluids 15, 2446.Google Scholar
Tiwari, R. S. & Sharma, S. R. 1981 Indian J. pure Appl. phys. 19, 653.Google Scholar
Tiwari, R. S. & Sharma, S. R. 1982 Can. J. Phys. 60, 154.CrossRefGoogle Scholar
Tran, M. Q. & Hist, P. J. 1974 Plasma Phys. 16, 617.CrossRefGoogle Scholar
Watanabe, S. 1984 J. Phys. Soc. Japan 53, 950.Google Scholar
Yashvir, , Tiwari, R. S.& Sharma, S. R. 1988 Can. J. Phys. 66, 824.CrossRefGoogle Scholar