Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T11:11:19.645Z Has data issue: false hasContentIssue false

Dispersion ion-drift hydrodynamics

Published online by Cambridge University Press:  13 March 2009

V. P. Lakhin
Affiliation:
Space Research Institute, 84/32 Moscow, U.S.S.R.
S. V. Makurin
Affiliation:
Space Research Institute, 84/32 Moscow, U.S.S.R.
A. B. Mikhailovskii
Affiliation:
Space Research Institute, 84/32 Moscow, U.S.S.R.
O. G. Onishchenko
Affiliation:
Space Research Institute, 84/32 Moscow, U.S.S.R.

Abstract

The set of hydrodynamic equations for the ion component of a magnetized low-pressure plasma, including the nonlinear ion drift and waves related to it, taking into account dispersion effects of order k2ρ2i (kis the characteristic transverse wavenumber and ρi is the ion Larmor radius), is obtained. The reduction of these equations using the standard assumptions of vortex theory is given. The problem of the integrals of motion of the simplified equations is discussed. Account is taken of the gravitational force (which models curvature of the magnetic field lines), the three-dimensionality of the perturbations (drift-Alfvén effects) and plasma rotation. It is suggested that the ion-drift hydrodynamics discussed here should be the basis for the analysis of the ion drift and the vortices related to it, as well as for the theory of decay processes with participation of the ion-drift waves.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Braginskii, S. I. 1965 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 1, p. 205. Consultants Bureau.Google Scholar
Grad, H. 1949 Commun. Pure Appl. Math. 2, 311.Google Scholar
Hasegawa, A. & Mima, K. 1977 Phys. Rev. Lett. 39, 205.CrossRefGoogle Scholar
Horton, W., Liu, J., Meiss, J. D. & Sedlak, J. E. 1986 Phys. Fluids, 29, 1004.CrossRefGoogle Scholar
Jungwirth, K. 1968 Nucl. Fusion, 8, 23.CrossRefGoogle Scholar
Kogan, E. Ya., Moiseev, S. S. & Oraevskii, V. N. 1965 J. Appl. Mech. Tech. Phys N6, 25.Google Scholar
Lakhin, V. P., Mikhailovskii, A. B. & Onishchenko, O. G. 1985 Preprint of Institute of Space Res. N 1042.Google Scholar
Lakhin, V. P., Mikhailovskii, A. B. & Onishchenko, O. G. 1987 a Fiz. Plasmy, 13, 188.Google Scholar
Lakhin, V. P., Mikhailovskii, A. B. & Smolyakov, A. I. 1987 b Zh. Eksp. Teor. Fiz. 92, 1601.Google Scholar
Lakhin, V. P., Makurin, S. V., Mikhailovskii, A. B. & Onishchenko, O. G. 1987 c J Plasma Phys. 38, 407.CrossRefGoogle Scholar
Liu, J. & Horton, W. 1986 Phys. Fluids, 29, 1828.CrossRefGoogle Scholar
Mikhailovskii, A. B. 1967 a Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 3, p. 159. Consultants Bureau.CrossRefGoogle Scholar
Mikhailovskii, A. B. 1967 b Soviet Phys. JETP 25, 623.Google Scholar
Mikhailovskii, A. B. 1974 Theory of Plasma Instabilities, vol. 2. Consultants Bureau.CrossRefGoogle Scholar
Mikhailovskii, A. B., Aburdzhaniya, G. D., Makurin, S. V. & Onishchenko, O. G. 1984 a Phys. Lett. 105A, 45.CrossRefGoogle Scholar
Mikhailovskii, A. B., Lakhin, V. P., Mikhailovskaya, L. A. & Onishchenko, O. G. 1984 b Soviet Phys. JETP 59, 1198.Google Scholar
Mikhailovskii, A. B. & Smolyakov, A. I. 1985 Soviet Phys. JETP 61, 109.Google Scholar
Mikhailovskii, A. B. & Tsypin, V. S. 1971 Plasma Phys. 13, 784.Google Scholar
Mikhailovskii, A. B. & Tsypin, V. S. 1982 Soviet Phys. JETP 56, 75.Google Scholar
Mikhailovskii, A. B. & Tsypin, V. S. 1984 Beitr. Plasma Phys. 24, 335.CrossRefGoogle Scholar
Nemov, V. V. 1970 Nucl. Fusion, 10, 19.CrossRefGoogle Scholar
Rudakov, L. I. 1962 Nuclea Sintez, 2, 107.Google Scholar
Volkov, T. F. 1966 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 4, p. 1. Consultants Bureau.Google Scholar