Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T18:32:04.292Z Has data issue: false hasContentIssue false

Dispersive magnetized waves in the solar wind plasma

Published online by Cambridge University Press:  04 June 2010

B. DASGUPTA
Affiliation:
Center for Space Physics and Aeronomic Research (CSPAR), University of Alabama at Huntsville, Huntsville, AL 35805, USA
DASTGEER SHAIKH
Affiliation:
Center for Space Physics and Aeronomic Research (CSPAR), University of Alabama at Huntsville, Huntsville, AL 35805, USA Department of Physics, University of Alabama at Huntsville, Huntsville, AL 35805, USA (dastgeer.shaikh@uah.edu)
P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Abstract

We derive a generalized linear dispersion relation of waves in a strongly magnetized, compressible, homogeneous and isotropic quasi-neutral plasma. Starting from a two-fluid model, describing distinguishable electron and ion fluids, we obtain a six-order linear dispersion relation of magnetized waves that contains effects due to electron and ion inertia, finite plasma beta and angular dependence of phase speed. We investigate propagation characteristics of these magnetized waves in a regime where scale lengths are comparable with electron and ion inertial length scales. This regime corresponds essentially to the solar wind plasma, where length scales, comparable with ion cyclotron frequency, lead to dispersive effects. These scales in conjunction with linear waves present a great deal of challenges in understanding the high-frequency, small-scale dynamics of turbulent fluctuations in the solar wind plasma.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Goldstein, M. L., Roberts, D. A. and Matthaeus, W. H. 1995 Magnetohydrodynamic turbulence in the solar wind. Ann. Rev. Astron. Astrophys. 33, 283.CrossRefGoogle Scholar
[2]Matthaeus, W. H., Goldstein, M. L. and King, J. H. 1986 An interplanetary magnetic field ensemble at 1 AU. J. Geophys. Res. 91, 59.CrossRefGoogle Scholar
[3]Goldstein, M. L., Roberts, D. A. and Fitch, C. A. 1994 Properties of the fluctuating magnetic helicity in the inertial and dissipation ranges of solar wind turbulence. J. Geophys. Res. 99, 11519.CrossRefGoogle Scholar
[4]Leamon, R. J., Smith, C. W., Ness, N. F., Matthaeus, W. H. and Hung, W. K. 1998 Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775.CrossRefGoogle Scholar
[5]Shaikh, D. and Zank, G. P. 2009 Spectral features of solar wind turbulent plasma. MNRAS, 402 (1), 362370, doi: 10.1111/j.CrossRefGoogle Scholar
[6]Smith, C. W., Matthaeus, W. H. and Ness, N. F. 1990 Proc. 21st Int. Conf. Cosmic Rays 5, 280.Google Scholar
[7]Biskamp, D., Schwarz, E. and Drake, J. F. 1996 Two-dimensional electron magnetohydrodynamic turbulence. Phys. Rev. Letts. 76, 1264.CrossRefGoogle ScholarPubMed
[8]Shaikh, D. and Zank, G. P. 2003 Anisotropic turbulence in two-dimensional electron magnetohydrodynamics. Astrophys. J. 599, 715.Google Scholar
[9]Shaikh, D. 2004 Generation of coherent structures in electron magnetohydrodynamics. Physica Scripta 69, 216.Google Scholar
[10]Shaikh, D. and Zank, G. P. 2005 Driven dissipative whistler wave turbulence. Phys. Plasmas 12, 122310.CrossRefGoogle Scholar
[11]Gurnet, D. and Bhattacharjee, A. 2005 Introduction to Plasma Physics with Space and Laboratory Application. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
[12]Ishida, A., Cheng, C. Z. and Peng, Y-K. M. 2005 Phys. Plasmas 12, 052113.CrossRefGoogle Scholar
[13]Stringer, T. E. 1963 Low-frequency waves in an unbounded plasma. J. Nucl. Energy Part C Plasma Phys. 5, 89.CrossRefGoogle Scholar
[14]Damiano, P. A., Wright, A. N. and McKenzie, J. F. 2009 Phys. Plasmas 16, 062901.CrossRefGoogle Scholar
[15]Swanson, D. G. 1989 Plasma Waves, Ch. 2. New York: Academic Press.CrossRefGoogle Scholar
[16]Shukla, P. K. 1978 Modulational instability of whistler-mode signals. Nature 274, 874.CrossRefGoogle Scholar
[17]Shaikh, D. and Shukla, P. K. 2009 3D fluctuation spectra in the Hall-MHD plasma. Phys. Rev. Letts. 102, 045004.CrossRefGoogle ScholarPubMed
[18]Shukla, P. K. and Stenflo, L. 1985 Non-linear propagation of electromagnetic Alfvén waves in a magnetoplasma. Phys. Fluids. 28, 1578.Google Scholar