Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T22:39:28.506Z Has data issue: false hasContentIssue false

Double Beltrami states and loss of equilibrium in electron, positron and ion plasmas

Published online by Cambridge University Press:  20 June 2019

S. M. Gondal*
Affiliation:
Department of Physics, University of Engineering and Technology, Lahore 54890, Pakistan
M. Iqbal
Affiliation:
Department of Physics, University of Engineering and Technology, Lahore 54890, Pakistan
Shafa Ullah
Affiliation:
Department of Physics, University of Engineering and Technology, Lahore 54890, Pakistan
M. Asghar
Affiliation:
Department of Physics, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
Ashfaq H. Khosa
Affiliation:
COMSATS Institute of Information Technology, Islamabad, Pakistan
*
Email address for correspondence: sabagondal@gmail.com

Abstract

It is shown that an electron, positron and ion plasma can be self-organized to a double Beltrami state – the superposition of two force-free states. The scale parameters which determine the nature of the self-organized structures are found to depend on the number densities of the plasma species. The loss of equilibrium in slowly evolving double Beltrmi states is investigated. The effects of density ratios, helicities, positron flows and energy on equilibrium are investigated. It is found that the double Beltrami state transforms to a single Beltrami state at the termination of equilibrium. It is also shown that much of the magnetic energy converts to the flow kinetic energy through catastrophic transformation.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beloborodov, A. M. & Thompson, C. 2007a Magnetar corona. Astrophys. Space Sci. 308, 631639.Google Scholar
Beloborodov, A. M. & Thompson, C. 2007b Corona of magnetars. Astrophys. Space Sci. 657, 967993.Google Scholar
Berezhiani, V. I., El-Ashry, M. Y. & Mofiz, U. A. 1994 Theory of strong-electromagnetic-wave propagation in an electron–positron–ion plasma. Phys. Rev. E 50, 448.Google Scholar
Berezhiani, V. I. & Mahajan, S. M. 1994 Large amplitude localized structures in a relativistic electron–positron–ion plasma. Phys. Rev. Lett. 73, 1110.Google Scholar
Berezhiani, V. I. & Mahajan, S. M. 1995 Large relativistic density pulses in electron–positron–ion plasmas. Phys. Rev. E 52, 1968.Google Scholar
Bhattacharyya, R., Janaki, M. S. & Dasgupta, B. 2003 Relaxation in electron-positron plasma: a possibility. Phys. Lett. A 315, 120125.Google Scholar
Bhattacharyya, R., Janaki, M. S., Dasgupta, B. & Zank, G. P. 2007 Solar arcades as possible minimum dissipative relaxed states. Solar Phys. 240, 6376.Google Scholar
Browning, P. K. & Van der Linden, R. A. M. 2003 Solar coronal heating by relaxation events. Astron. Astrophys. 400, 355367.Google Scholar
Burlaga, L. F. 1988 Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93, 72177224.Google Scholar
Fuentes-Fernández, J., Parnell, C. E. & Hood, A. W. 2010 Magnetohydrodynamics dynamical relaxation of coronal magnetic fields I. Parallel untwisted magnetic fields in 2D. Astron. Astrophys. 514, A90.Google Scholar
Gibbons, G. W., Hawking, S. W. & Siklos, S. 1983 The Very Early Universe. Cambridge University Press.Google Scholar
Goldreich, P. & Julian, W. H. 1969 Pulsar electrodynamics. Astrophys. J 157, 867.Google Scholar
Gondal, S. M.2018 Beltrami States in three component plasmas, PhD thesis, University of Engineering and Technology, Lahore, Pakistan.Google Scholar
Gondal, S. M., Iqbal, M., Khosa, A. H. & Murtaza, G. 2017 Quadruple Beltrami fields in three component plasmas. Phys. Plasmas 24, 062903.Google Scholar
Guzdar, P. N., Mahajan, S. M. & Yoshida, Z. 2005 A theory for the pressure pedestal in high (H) mode tokamak discharges. Phys. Plasmas 12, 032502.Google Scholar
Hasegawa, A. 1985 Self-organization processes in continuous media. Adv. Phys. 34, 142.Google Scholar
Hidalgo, M. A., Nieves-Chinchilla, T. & Cid, C. 2002 Elliptical cross-section model for the magnetic topology of magnetic clouds. Geophys. Res. Lett. 29, 15–1.Google Scholar
Hood, A. W., Browning, P. K. & Van der Linden, R. A. M. 2009 Coronal heating by magnetic reconnection in loops with zero net current. Astron. Astrophys. 506, 913925.Google Scholar
Iqbal, M. 2012 Beltrami fields in partially ionized plasmas. J. Fusion Energy 31, 4446.Google Scholar
Iqbal, M. 2013 Beltrami fields at nanoscales in a quantum electron-hole plasma. Appl. Phys. Lett. 103, 034109.Google Scholar
Iqbal, M., Berezhiani, V. I. & Yoshida, Z. 2008 Multiscale structures in relativistic pair plasmas. Phys. Plasmas 15, 032905.Google Scholar
Iqbal, M. & Shukla, P. K. 2011 Relaxation of a magnetized electron-positron-ion plasma with flow. Phys. Lett. A 375, 27252727.Google Scholar
Iqbal, M. & Shukla, P. K. 2012a Relaxed magnetic field structures in multi-ion plasmas. Phys. Plasmas 339, 1923.Google Scholar
Iqbal, M. & Shukla, P. K. 2012b Beltrami fields in a hot electron-positron-ion plasma. J. Plasma Phys. 78, 207210.Google Scholar
Iqbal, M. & Shukla, P. K. 2013 Multiscale structures in a two-temperature relativistic electron-positron-ion plasma. J. Plasma Phys. 79, 715720.Google Scholar
Kagan, D. & Mahajan, S. M. 2010 Application of double Beltrami states to solar eruptions. Mon. Not. R. Astron. Soc. 406, 11401145.Google Scholar
Lingam, M. & Mahajan, S. M. 2015 Modelling astrophysical outflows via the unified dynamo–reverse dynamo mechanism. Mon. Not. R. Astron. Soc. 449, L36L40.Google Scholar
Mahajan, S. M., Berezhiani, V. I. & Miklaszewski, R. 1998 On the robustness of the localized spatiotemporal structures in electron–positron–ion plasmas. Phys. Plasmas 5, 3264.Google Scholar
Mahajan, S. M. & Lingam, M. 2015 Multi-fluid systems—Multi-Beltrami relaxed states and their implications. Phys. Plasmas 22, 092123.Google Scholar
Mahajan, S. M., Miklaszewski, R., Nikol’Skaya, K. I. & Shatashvili, N. L. 2001 Formation and primary heating of the solar corona: theory and simulation. Phys. Plasmas 8, 13401357.Google Scholar
Mahajan, S. M., Nikol’Skaya, K. I., Shatashvili, N. L. & Yoshida, Z. 2002 Generation of flows in the solar atmosphere due to magnetofluid coupling. Astrophys. J. 576, L161L164.Google Scholar
Mahajan, S. M. & Yoshida, Z. 1998 Double curl Beltrami flow: diamagnetic structures. Phys. Rev. Lett. 81, 48634866.Google Scholar
Mahajan, S. M. & Yoshida, Z. 2000 A collisionless self-organizing model for the high-confinement (H-mode) boundary layer. Phys. Plasmas 7, 635.Google Scholar
Maity, C. 2014 Phase-mixing of Langmuir oscillations in cold electron-positron-ion plasmas. Phys. Plasmas 21, 072317.Google Scholar
Michel, F. C. 1982 Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 1.Google Scholar
Miller, H. R. & Witta, P. J. 1987 Active Galactic Nuclei. Springer.Google Scholar
Misner, W., Thorne, K. S. & Wheeler, J. A. 1973 Gravitation. Freeman Publishers.Google Scholar
Ohsaki, S., Shatashvili, N. L., Yoshida, Z. & Mahajan, S. M. 2001 Magnetofluid coupling: eruptive events in the solar corona. Astrophys. J. 559, L61L65.Google Scholar
Ohsaki, S., Shatashvili, N. L., Yoshida, Z. & Mahajan, S. M. 2002 Energy transformation mechanism in the solar atmosphere associated with magnetofluid coupling: edxplosive and eruptive events. Astrophys. J. 570, 395407.Google Scholar
Popel, S. I., Valdimirov, S. V. & Shukla, P. K. 1995 Ion-acoustic solitons in electron–positron–ion plasmas. Phys. Plasmas 2, 716.Google Scholar
Pramnaik, S. & Maity, C. 2017 Effects of magnetic field on phase-mixing of electrostatic oscillations in cold electron-positron-ion plasmas. Phys. Plasmas 23, 084504.Google Scholar
Rizzato, F. B. 1988 Weak nonlinear electromagnetic waves and low-frequency magnetic-field generation in electron-positron-ion plasmas. J. Plasma Phys. 40, 289.Google Scholar
Ruffini, R., Vereshchagin, G. & Xue, S.-S. 2010 Electron–positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Rep. 487, 1140.Google Scholar
Sadiq, S., Mahmood, S., Haque, Q. & Ali, M. Z. 2014 Ion acoustic solutions in dense magnetized plasmas with nonrelativistic and ultrarelativistic degenerate electrons and positrons. Astrophys. J. 739, 27.Google Scholar
Shatashvili, N. L., Mahajan, S. M. & Berezhiani, V. I. 2016 Mechanisms for multi-scale structures in dense degenerate astrophysical plasmas. Astrophys. Space Sci. 361, 70.Google Scholar
Steinhauer, L. C. & Ishida, A. 1997 Relaxation of two-species magnetofluid. Phys. Rev. Lett. 79, 34233426.Google Scholar
Steinhauer, L. C. & Ishida, A. 1998 Relaxation of a two-species magnetofluid and application to finite- $\unicode[STIX]{x1D6FD}$ flowing plasmas. Phys. Plasmas 5, 26092622.Google Scholar
Tandberg-Hansen, E. & Emslie, A. G. 1988 The Physics of Solar Flares. Cambridge University Press.Google Scholar
Taylor, J. B. 1974 Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 11391141.Google Scholar
Taylor, J. B. 1986 Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741763.Google Scholar
Verma, P. S. 2016 Nonlinear oscillations and waves in multi-species cold plasmas. Phys. Plasmas 23, 122125.Google Scholar
White, T. R. & Lightman, A. P. 1989 Hot accretion disks with electron-positron pairs. Astrophys. J. 340, 10241037.Google Scholar
Yoshida, Z. & Giga, Y. 1990 Remarks on spectra of operator rot. Math. Z. 204, 235245.Google Scholar
Yoshida, Z. & Mahajan, S. M. 1999 Simultaneous Beltrami conditions in coupled vortex dynamics. J. Math. Phys. 40, 50805091.Google Scholar
Yoshida, Z. & Mahajan, S. M. 2002 Variational principles and self-organization in two-fluid plasmas. Phys. Rev. Lett. 88, 095001.Google Scholar
Yoshida, Z., Mahajan, S. M. & Ohsaki, S. 2004 Scale hierarchy created in plasma flow. Phys. Plasmas 11, 3660.Google Scholar
Yoshida, Z., Mahajan, S. M., Ohsaki, S., Iqbal, M. & Shatashvili, N. 2001 Beltrami fields in plasmas: high-confinement boundary layers and high beta equilibria. Phys. Plasmas 8, 21252131.Google Scholar