Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T23:51:38.876Z Has data issue: false hasContentIssue false

Dynamic behaviour of an oxygen dc discharge

Published online by Cambridge University Press:  01 February 2009

A. RICHTER
Affiliation:
Institute for Physics, University of Greifswald, Felix-Hausdorff-Straße 6, 17489 Greifswald, Germany (richter@physik.uni-greifswald.de)
H. TESTRICH
Affiliation:
Institute for Physics, University of Greifswald, Felix-Hausdorff-Straße 6, 17489 Greifswald, Germany (richter@physik.uni-greifswald.de)
H.-E. WAGNER
Affiliation:
Institute for Physics, University of Greifswald, Felix-Hausdorff-Straße 6, 17489 Greifswald, Germany (richter@physik.uni-greifswald.de)
D. LOFFHAGEN
Affiliation:
INP Greifswald, Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
C. WILKE
Affiliation:
INP Greifswald, Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany

Abstract

The dynamic behaviour of a positive column oxygen plasma is investigated both experimentally and theoretically. In the experiment the response of the discharge current to small external perturbations of the electrical field is measured. Using these data the electrical impedance of the plasma is obtained dependent on the frequency of the external perturbation. A drift approximation model is presented, which covers the experimental findings over a wide range of the perturbation frequency. It appears that the influence of the fluctuations of the neutral species is negligible and the dynamic behaviour of the plasma is mostly governed by the charged particles. This provides a simple expression for the plasma impedance which allows the reaction rate and transport coefficients, as well as discharge parameters, to be validated.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bogdanov, E. A., Kudryavtsev, A. A., Tsendin, L. D., Arslanbekov, R. R., Kolobov, V. I. and Kudryavtsev, V. V. 2003 Scaling laws for the spatial distributions of the plasma parameters in the positive column of a dc oxygen discharge. Tech. Phys. 48, 11511158.CrossRefGoogle Scholar
[2]Franklin, R. N. 2001 A comprehensive treatment of the positive column of discharges in electronegative gases. Proc. R. Soc. Lond. A 457, 307330.CrossRefGoogle Scholar
[3]Gudmundsson, J. T., Kouznetsov, I. G., Patel, K. K. and Lieberman, M. A. 2001 Electronegativity of low-pressure high-density oxygen discharges. J. Phys. D: Appl. Phys. 34, 11001109.CrossRefGoogle Scholar
[4]Gudmundsson, J. T. 2004 Recombination and detachment in oxygen discharges: the role of metastable oxygen molecules. J. Phys. D: Appl. Phys. 37, 20732081.CrossRefGoogle Scholar
[5]Katsch, H. M., Sturm, T., Quandt, E. and Döbele, H. F. 2000 Negative ions and the role of metastable molecules in a capacitively coupled radiofrequency excited discharge in oxygen. Plasma Sources Sci. Technol. 9, 323330.CrossRefGoogle Scholar
[6]Lichtenberg, A. J., Lieberman, M. A., Kouznetsov, I. G. and Chung, T. H. 2000 Transitions and scaling laws for electronegative discharge models. Plasma Sources Sci. Technol. 9, 4556.CrossRefGoogle Scholar
[7]Corr, C. S., Steen, P. G. and Graham, W. G. 2003 Instabilities in an inductively coupled oxygen plasma. Plasma Sources Sci. Technol. 12, 265272.CrossRefGoogle Scholar
[8]Descoeudres, A., Sansonnens, L. and Hollenstein, Ch. 2003 Attachment-induced ionization instability in electronegative capacitive RF discharges. Plasma Sources Sci. Technol. 12, 152157.CrossRefGoogle Scholar
[9]Nighan, W. L. and Wiegand, W. J. 1974 Influence of negative-ion processes on steady-state properties and striations in molecular gas discharges. Phys. Rev. A 10, 922945.CrossRefGoogle Scholar
[10]Belostotsky, S. G., Economou, D. J., Lopaev, D. V. and Rakhimova, T. V. 2005 Negative ion destruction by O(3P) atoms and O 2(a1Δg) molecules in an oxygen plasma. Plasma Sources Sci. Technol. 14, 532542.CrossRefGoogle Scholar
[11]Kaganovich, I. D., Ramamurthi, B. N., and Economou, D. J. 2001 Spatiotemporal dynamics of charged species in the afterglow of plasmas containing negative ions. Phys. Rev. E 64, 036402.Google ScholarPubMed
[12]Wilke, C., Kablan, N. and Deutsch, H. 1990 On a new method of determining collision rates for ionization by means of pair collisions and stepwise ionization. Contr. Plasma Phys. 30, 481486.CrossRefGoogle Scholar
[13]Phelps, A. V. 1998 Electron Transport Data. ftp://jila.colorado.edu/collision.Google Scholar
[14]Raizer, Yu. P. 1997 Gas Discharge Physics. Berlin: Springer.Google Scholar
[15]Leyh, H., Loffhagen, D. and Winkler, R. 1998 A new multi-term solution technique for the electron Boltzmann equation of weakly ionized steady-state plasmas. Comput. Phys. Commun. 113, 3348.CrossRefGoogle Scholar
[16]Pinh~ao, N. R., Donkó, Z., Loffhagen, D., Pinheiro, M. J. and Richley, E. A. 2004 Comparison of kinetic calculation techniques for the analysis of electron swarm transport at low to moderate E/N values. Plasma Sources Sci. Technol. 13, 719728.CrossRefGoogle Scholar
[17]Franklin, R. N. 2001 The role of O 2 (a1Δg) metastables and associative detachment in discharges in oxygen. J. Phys. D: Appl. Phys. 34, 18341839.CrossRefGoogle Scholar
[18]Ellis, H. W., Pai, R. Y., McDaniel, E. W., Mason, E. A. and Viehland, L. A. 1976 Transport properties of gaseous ions over a wide energy range. Atomic Data Nucl. Tables 17, 177210.CrossRefGoogle Scholar
[19]Viehland, L. A. and Mason, E. A. 1995 Transport properties of gaseous ions over a wide energy range, IV. Atomic Data Nucl. Tables 60, 3795.CrossRefGoogle Scholar
[20]Ferreira, C. M., Gousset, G. and Touzeau, M. 1988 Quasi-neutral theory of positive columns in electronegative gases. J. Phys. D: Appl. Phys. 21, 14031413.CrossRefGoogle Scholar
[21]Franklin, R. N. and Snell, J. 1999 Modelling discharges in electronegative gases J. Phys. D: Appl. Phys. 32, 21902203.CrossRefGoogle Scholar
[22]Gousset, G., Touzeau, M., Vialle, M. and Ferreira, C. M. 1989 Kinetic model of a dc oxygen glow discharge. Plasma Chem. Plasma Proc. 9, 189206.CrossRefGoogle Scholar
[23]Sabadil, H. and Pfau, S. 1985 Measurements of the degree of dissociation in oxygen dc discharges: comparison of the ozone method with the Wrede–Harteck method. Plasma Chem. Plasma Proc. 5, 6779.CrossRefGoogle Scholar
[24]Klopovskiy, K. S., Lopaev, D. V., Popov, N. A., Rakhimov, A. T. and Rakhimova, T. V. 1999 Heterogeneous quenching of O21Δg molecules in H 2: O 2 mixtures. J. Phys. D: Appl. Phys. 32, 30043012.CrossRefGoogle Scholar
[25]Touzeau, M., Vialle, M., Zellagui, A., Gousset, G., Lefebvre, M. and Pealat, M. 1991 Spectroscopic temperature measurements in oxygen discharges. J. Phys. D: Appl. Phys. 24, 4147.CrossRefGoogle Scholar
[26]Sabadil, H. 1966 Die Schichterscheinungen in der positiven Säule der Sauerstoff-Niederdruckentladung. Beitr. Plasmaphys. 6, 305317.CrossRefGoogle Scholar
[27]Gousset, G., Ferreira, C. M., Pinheiro, M., Sa, P. A., Touzeau, M., Vialle, M. and Loureiro, J. 1991 Electron and heavy-particle kinetics in the low pressure oxygen positive column. J. Phys. D: Appl. Phys. 24, 290300.CrossRefGoogle Scholar
[28]Pfau, S., Rutscher, A. and Wojaczek, K. 1969 Das Ähnlichkeitsgesetz für quasineutrale, anisotherme Entladungssäulen. Beitr. Plasmaphys. 9, 333358.CrossRefGoogle Scholar