Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T03:43:14.610Z Has data issue: false hasContentIssue false

Effect of finite ion Larmor radius on the Kelvin–Helmholtz instability

Published online by Cambridge University Press:  13 March 2009

Hirosh Nagano
Affiliation:
Department of Physics, Gifu College of Dentistry, Gifu, Japan

Abstract

The effect of finite ion Larmor radius on the Kelvin–Helmholtz instability is investigated in the cases of an incompressible and a compressible plasma. When a wave vector is perpendicular to a uniform magnetic field, the effect of finite Larmor radius (FLR) stabilizes perturbations with a wavenumber exceeding a critical value, while there exists another case that the FLR effect destabilizes still more than the usual MHD approximation. The difference between these cases is decided from the configuration of flow velocity and magnetic field. When a wave vector is parallel to a magnetic field, the FLR effect tends to stabilize perturbations with a larger wavenumber.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhatia, P. K. 1970 Cosmic Electrodynamics, 1, 27.Google Scholar
Chew, G. F., Goldberger, M. L. & Low, F. E. 1956 Proc. Roy. Soc. A 236, 112.Google Scholar
Gerwim, R. A. 1968 Rev. Mod. Phys. 40, 652.CrossRefGoogle Scholar
Hosking, R. J. & Kalra, G. L. 1972 J. Plasma Phys. 7, 545.CrossRefGoogle Scholar
Kalra, G. L. 1967 Can. J. Phys. 45, 1579.CrossRefGoogle Scholar
Kalra, G. L. 1969 Can. J. Phys. 47, 831.CrossRefGoogle Scholar
Lerche, I. 1966 J. Geophys. Res. 71, 2365.CrossRefGoogle Scholar
McMahon, A. 1965 Phys. Fluids, 8, 1840.Google Scholar
Nayyar, N. K. & Trehan, S. K. 1970 J. Plasma Phys. 4, 563.CrossRefGoogle Scholar
Ong, R. S. B. & Roderick, N. 1972 Planet. Space Sci. 20, 1.CrossRefGoogle Scholar
Rosenbluth, M. N., Krall, N. A. & Rostoker, N. 1962 Nucl. Fusion Suppl. 1, 143.Google Scholar
Sen, A. K. 1965 Planet. Space Sci. 13, 131.CrossRefGoogle Scholar
Simon, A. & Thompson, W. B. 1966 Plasma Phys. 8, 373.Google Scholar
Singh, S. & Hans, H. 1966 Nucl. Fusion, 6, 6.CrossRefGoogle Scholar
Southwood, D. J. 1968 Planet. Space Sci. 16, 587.CrossRefGoogle Scholar
Talwar, S. P. 1964 J. Geophys. Res. 69, 2707.CrossRefGoogle Scholar
Thompson, W. B. 1961 Rep. Prog. Phys. 24, 363.CrossRefGoogle Scholar
Yajima, N. 1966 Progr. Theoret. Phys. 36, 1.CrossRefGoogle Scholar