Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T22:12:58.580Z Has data issue: false hasContentIssue false

Effect of q-non-extensive distribution of electrons on the plasma sheath floating potential

Published online by Cambridge University Press:  09 April 2014

M. Sharifian*
Affiliation:
Atomic and Molecular Group, Department of Physics, Yazd University, P.O. Box: 891995-741, Yazd, Iran
H. R. Sharifinejad
Affiliation:
Department of Physics, Yazd Branch, Islamic Azad University, Yazd, Iran
M. Borhani Zarandi
Affiliation:
Atomic and Molecular Group, Department of Physics, Yazd University, P.O. Box: 891995-741, Yazd, Iran
A. R. Niknam
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, G. C., P.O. Box: 198396-3113, Evin, Tehran, Iran
*
Email address for correspondence: mehdi.sharifian@yazd.ac.ir

Abstract

In this paper, a collisionless unmagnetized plasma sheath consisting of electrons following non-extensive q-distribution, and cold mobile inertial ions is studied in the stationary state. In this type of plasma with non-Maxwellian electron distribution (Tsallis statistical mechanics), the effective electron temperature (Te, eff) and electron screening temperature (Te,*) are evaluated. The other plasma sheath phenomena such as the Bohm sheath criterion, Debye shielding, floating potential, and sheath length are investigated in the presence of q-non-extensive velocity-distributed electrons. It is observed that above-mentioned phenomena depend significantly on the non-extensive parameter q.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, S., Martinez, S., Pennini, F. and Plastino, A. 2001 Phys. Lett. A 281, 126.Google Scholar
Akihiro, K. 2004 J. Phys. D : Appl. Phys. 37, 1945.Google Scholar
Amour, R. and Tribeche, M. 2010 Phys. Plasmas 17, 063702.CrossRefGoogle Scholar
Bains, A. S., Tribeche, M. and Gill, T. S. 2011a Phys. Plasmas 18, 022108.CrossRefGoogle Scholar
Bains, A. S., Tribeche, M., Saini, N. S. and Gill, T. S. 2011b Phys. Plasmas 18, 104503.Google Scholar
Baishya, S. K. and Das, G. C. 2003 Phys. Plasmas 10, 3733.Google Scholar
Baishya, S. K., Das, G. C., Chutia, J. and Sarma, J. 1999 Phys. Plasmas 6, 3678.CrossRefGoogle Scholar
Boufendi, L., Bouchoule, A., Porteous, R. K., Blondeau, J. P., Plain, A. and Laure, C. 1993 J. Appl. Phys. 73, 2160.CrossRefGoogle Scholar
Cooke, D. L. and Katz, I. 1988 J. Spacecr. Rockets 25, 132.Google Scholar
Conrad, J. 1987 J. Appl. Phys. 62, 777.CrossRefGoogle Scholar
Demidov, V., DeJoseph, C. Jr. and Kudryavtsev, A. 2005 Phys. Rev. Lett. 95, 215002.CrossRefGoogle Scholar
Edelberg, E. A. and Aydil, E. S. 1999 J. Appl. Phys. 86, 4799.Google Scholar
Emmert, G. and Henry, M. 1992 J. Appl. Phys. 71 113.Google Scholar
Eslami, P., Mottaghizadeh, M. and Pakzad, H. R. 2011a Phys. Plasmas 18, 072305.Google Scholar
Eslami, P., Mottaghizadeh, M. and Pakzad, H. R. 2011b Phys. Plasmas 18, 102313.Google Scholar
Eslami, P., Mottaghizadeh, M. and Pakzad, H. R. 2011c Phys. Plasmas 18, 102303.CrossRefGoogle Scholar
Franklin, R. N. 2003 J. Phys. D : Appl. Phys. 36, R309.Google Scholar
Ghomi, H., Sharifian, M., Niknam, A. R. and Shokri, B. 2006 J. Appl. Phys. 100, 113301.Google Scholar
Ghomi, H., Sharifian, M. and Shokri, B. 2007 Vacuum 81, 1292.Google Scholar
Ghosh, S. and Bharuthram, R. 2008 Astrophys. Space Sci. 314, 121.Google Scholar
Ghosh, D. K., Chatterjee, P. and Ghosh, U. N. 2012 Phys. Plasmas 19, 033703.Google Scholar
Goldstein, M. L., Eastwood, J. P., Treumann, R. A., Lucek, E. A., Pickett, J. and Décréau, P. 2005 Space Sci. Rev. 118, 7.CrossRefGoogle Scholar
Hershkowitz, N. 2005 Phys. Plasmas 12, 055502.Google Scholar
Kaniadakis, G. 2001 Phys. Lett. A 288, 283.Google Scholar
Leubner, M. 2008 Nonlinear Process. Geophys. 15, 531.Google Scholar
Lieberman, M. A. and Lichtenberg, A. J. 1994 Principles of Plasma Discharges and Materials Processing. New York: Wiley.Google Scholar
Lima, J., Silva, R. Jr. and Santos, J. 2000 Phys. Rev. E 61, 3260.Google Scholar
Liu, Y., Liu, S. Q. and Dai, B. 2011 Phys. Plasmas 18, 092309.Google Scholar
Mandell, M. J., Davis, V. A., Cooke, D. L., Wheelock, A. T. and Roth, C. 2006 IEEE Trans. Plasma Sci. 34, 2084.Google Scholar
Mendis, D. and Rosenberg, M. 1994 Annu. Rev. Astron. Astrophys. 32, 419.Google Scholar
Pakzad, H. R. 2009 Phys. Lett. A 373, 847.CrossRefGoogle Scholar
Pakzad, H. R. 2011a Astrophys. Space Sci. 334, 337.Google Scholar
Pakzad, H. R. 2011b Phys. Plasmas 18, 082105.Google Scholar
Pakzad, H. R. and Javidan, K. 2011 Astrophys. Space Sci. 331, 175.Google Scholar
Pakzad, H. R. and Tribeche, M. 2011 Astrophys. Space Sci. 334, 45.Google Scholar
Parker, L. W. 1978 J. Geophys. Res. 83, 4873.Google Scholar
Parvin, E., Marzieh, M. and Hamid Reza, P. 2011 Phys. Scr. 84, 015504.Google Scholar
Pines, V., Zlatkowski, M. and Chait, A. 2010 Adv. Space Res. 46, 942.Google Scholar
Rényi, A. 1955 Acta Math. Hung. 6, 285.CrossRefGoogle Scholar
RezaPakzad, H. Pakzad, H. 2011 Phys. Scr. 83, 015505.Google Scholar
Riemann, K. U. 1991 J. Phys. D: Appl. Phys. 24, 493.CrossRefGoogle Scholar
Riemann, K. 2000 J. Tech. Phys. 41,89.Google Scholar
Riemann, K. U. 2009 Plasma Sources Sci. Technol. 18, 014006.Google Scholar
Roy, K., Saha, T. and Chatterjee, P. 2012a Phys. Plasmas 19, 104502.Google Scholar
Roy, K., Saha, T., Chatterjee, P. and Tribeche, M. 2012b Phys. Plasmas 19, 042113.Google Scholar
Sahu, B. 2011 Phys. Plasmas 18, 082302.Google Scholar
Selwyn, G. S., Heidenreich, J. E. and Haller, K. L. 1990 Appl. Phys. Lett. 57, 1876.Google Scholar
Sharifian, M. and Shokri, B. 2007 Phys. Plasmas 14, 093503.Google Scholar
Sharifian, M. and Shokri, B. 2008 Phys. Plasmas 15, 033503.Google Scholar
Sharifian, M. and Shokri, B. 2010 J. Plasma Phys. 77, 307.CrossRefGoogle Scholar
Sheehan, D. P., Carillo, M. and Heidbrink, W. 1990 Rev. Sci. Instrum. 61, 3871.Google Scholar
Shukla, P., Rao, N., Yu, M. and Tsintsadze, N. 1986 Phys. Rep. 138, 1.Google Scholar
Silva, R. Jr., Plastino, A. and Lima, J. 1998 Phys. Lett. A 249,401.Google Scholar
Stubbs, T. J., Vondrak, R. R. and Farrell, W. M. 2006 Adv. Space Res. 37, 59.Google Scholar
Tribeche, M., Djebarni, L. and Amour, R. 2010 Phys. Plasmas 17, 042114.Google Scholar
Tribeche, M. and Merriche, A. 2011 Phys. Plasmas 18, 034502.Google Scholar
Tsallis, C. 1988 J. Stat. Phys. 52, 479.Google Scholar
Wada, T. 2002 Phys. Lett. A 297,334.Google Scholar
Wang, Z.-X., Liu, J.-Y., Liu, Y. and Wang, X. 2005 Phys. Plasmas 12, 012104.CrossRefGoogle Scholar