Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T05:02:37.926Z Has data issue: false hasContentIssue false

Effects of vortex-like (trapped) electron distribution on non-linear dust-acoustic waves with positive dust charge fluctuation

Published online by Cambridge University Press:  15 January 2010

M. R. AMIN
Affiliation:
Department of Electronics and Communications Engineering, East West University, Dhaka 1212, Bangladesh (ramin@ewubd.edu)
SANJIT K. PAUL
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
GURUDAS MANDAL
Affiliation:
Department of Electronics and Communications Engineering, East West University, Dhaka 1212, Bangladesh (ramin@ewubd.edu)
A. A. MAMUN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh

Abstract

The nonlinear propagation of dust-acoustic (DA) waves in a dusty plasma consisting of Boltzmann-distributed ions, vortex-like distributed electrons and mobile charge fluctuating positive dust has been investigated by employing the reductive perturbation method. The effects of dust grain charge fluctuation and the vortex-like electron distribution are found to modify the properties of the DA solitary waves significantly. The implications of these results for some space and astrophysical dusty plasma systems are briefly mentioned.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbasi, H., Tsintsadze, N. L. and Tskhakaya, D. D. 1999 Influence of particle trapping on the propagation of ion cyclotron waves. Phys. Plasmas 6, 2373.CrossRefGoogle Scholar
Angelis, U. de., Formisano, V. and Giordano, M. 1988 Ion plasma waves in dusty plasmas: Halley's comet. J. Plasma Phys. 40, 399.CrossRefGoogle Scholar
Barkan, A., D'Angelo, N. and Merlino, R. L. 1996 Laboratory observation of the dust acoustic wave mode. Planet. Space Sci. 44, 239.CrossRefGoogle Scholar
Barkan, A., Merlino, R. L. and D'Angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2, 3563.CrossRefGoogle Scholar
Bharuthram, R. and Shukla, P. K. 1992 Large amplitude ion acoustic solitons in a dusty plasmas. Planet. Space Sci. 40, 973.CrossRefGoogle Scholar
Bliokh, P. V. and Yaroshenko, V. V. 1985 Electrostatic waves in Saturn's rings. Sov. Astron. (Engl. Transl.) 29, 330.Google Scholar
Chow, V. W., Mendis, D. A. and Rosenberg, M. 1993 Role of grain size and particle distribution in electron emission in space plasmas. J. Geophys. Res. 98, 19065.CrossRefGoogle Scholar
El-Labany, S. K. and El-Taibany, W. F. 2004 Effect of dust charge variation on dust-acoustic solitary waves in a dusty plasma. J. Plasma Phys. 70, 69.CrossRefGoogle Scholar
Havnes, O. et al. 1996 First detection of charged dust particles in the Earth's mesosphere. J. Geophys. Res. 101, 10839.CrossRefGoogle Scholar
Homann, A., Melzer, A., Peters, S. and Piel, A. 1997 Determination of the dust screening lengths by laser-excited lattice waves. Phys. Rev. E 56, 7138.CrossRefGoogle Scholar
Horányi, M. and Mendis, D. A. 1986 The dynamics of charged dust in the tail of Comet Giacobini-Zinner. J. Geophys. Res 91, 355.CrossRefGoogle Scholar
Horányi, M. and Morfill, G. E. 1993 Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere. Nature 363, 144.CrossRefGoogle Scholar
Horányi, M. 1996 Charged dust dynamics in the solar system. Annu. Rev. Astrophys 34, 383.CrossRefGoogle Scholar
Karpman, V. I. 1975 Nonlinear Waves in Dispersive Media. Oxford: Pergamon Press, p. 101.Google Scholar
Ma, J. X. and Liu, J. 1997 Dust-acoustic soliton in a dusty plasma. Phys. Plasmas 4, 253.CrossRefGoogle Scholar
Mamun, A. A. 1999 Arbitary amplitude dust-acoustic solitary structures in a three-component dusty plasma. Planet. Space Sci. 268, 443.CrossRefGoogle Scholar
Melandsø, F. 1996 Lattice waves in dust plasma crystals. Phys. Plasmas 3, 3890.CrossRefGoogle Scholar
Mendis, D. A. and Horányi, M. 1991 Dust-Plasma Interaction in the Cometary Environment. In Cometary Plasma Processes, AGU Monograph, 61, 17.Google Scholar
Mendis, D. A. and Rosenberg, M. 1994 Cosmic dusty plasma. Annu. Rev. Astron. Astrophys. 32, 418.CrossRefGoogle Scholar
Merlino, R. L., Barkan, A., Thompson, C. and D'Angelo, N. 1998 Laboratory studies of waves and instabilities in dusty plasmas. Phys. of Plasmas 5, 1607.CrossRefGoogle Scholar
Merlino, R. L. and Goree, J. 2004 Dust vortex modes in a nonuniform dusty plasma. Phys. Today 57, 32.CrossRefGoogle Scholar
Nakamura, Y., Bailung, H. and Shukla, P. K. 1999 Observation of ion-acoustic shocks in a dusty plasma. Phys. Rev. Lett. 83, 1602.CrossRefGoogle Scholar
Popel, S. I. and Yu, M. Y. 1995 Ion acoustic solitons in impurity-containing plasmas. Contrib. Plasma Phys. 35, 103.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
Schamel, H. 1972 Stationary solitary, snoidal and sinusoidal ion acoustic waves. Plasma Phys. 14, 905.CrossRefGoogle Scholar
Shukla, P. K. 2001 A survey of dusty plasma physics. Phys. Plasmas 8, 1791.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: Institute of Physics Publishing Ltd.CrossRefGoogle Scholar
Shukla, P. K. and Silin, V. P. 1992 Dust ion acoustic wave. Physica Scripta 45, 508.CrossRefGoogle Scholar
Shukla, P. K. and Stenflo, L. 1992 Stimulated scattering of electromagnetic waves in dusty plasma. Astrophys. Space Sci. 190, 23.CrossRefGoogle Scholar
Talukdar, M. and Sarma, J. 1997 A new mathematical approach for shock wave solution in a dusty plasma. Phys. Plasmas 4, 4236.Google Scholar
Verheest, F. 2000 Waves in Dusty Plasmas. Dordrecht, Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1966 Propogation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar