Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T22:25:50.722Z Has data issue: false hasContentIssue false

Electrostatic-field fluctuations and form factors in multi-component non-equilibrium plasmas

Published online by Cambridge University Press:  13 March 2009

V. V. Belyi
Affiliation:
Izmiran, USSR Academy of Science, 142092 Moscow Region, U.S.S.R.
I. Paiva-Veretennicoff
Affiliation:
Algemene Natuurkunde, Faculteit Toegepaste Wetenschappen, Vrije Universiteit Brussel, Pleinlaan 2-1050 Brussel, Belgium

Abstract

Taking the Langevin approach to the evaluation of kinetic fluctuations with respect to a Maxwellian distribution characterized by different constant temperatures and mean velocities per species, the form factors and electrostatic field fluctuations of a multi-component plasma are derived. It is shown that the generalization of the Callen-Welton theorem for non-equilibrium systems, derived using thermodynamical arguments, has to be revised. Explicit values of the intensities of the electrostatic-field fluctuations are calculated, in the high-and low-frequency regimes. The former do not require any modelling of the collision integral. The latter have been calculated with a model that is more correct and simpler, than the Bhatnagar-Gross-Krook model.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhiezer, A. I., Akhiezer, I. A. & Sitenko, A. G. 1961 Soviet Phys. JETP, 41, 644.Google Scholar
Akhiezer, A., Akhiezer, I., Polovin, R., Sitenko, A. & Stepanov, K. 1975 Plasma Electrodynamics. Vol. 1: Linear Theory. Pergamon.Google Scholar
Balescu, R. 1975 Equilibrium and Nonequilibrium Statistical Mechanics. Wiley.Google Scholar
Belyi, V. V., Demoulin, W. & Paiva-Veretennicoff, I. 1989 a Phys. Fluids, B 1, 305.CrossRefGoogle Scholar
Belyi, V. V., Dewulf, D. & Paiva-Veretennicoff, I. 1989 b Phys. Fluids, B 1, 317.CrossRefGoogle Scholar
Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 Phys. Rev. 94, 511.Google Scholar
Callen, H. B. & Welton, T. A. 1951 Phys. Rev. 83, 43.CrossRefGoogle Scholar
Dougherty, J. P. & Farley, D. T. 1960 Proc. R. Soc. Land. A 259, 79.Google Scholar
Fatkulin, M. M. et al. 1981 Empirical Models of Midlatitude Ionosphere. Nauka.Google Scholar
Gantsevich, S. V., Gurevich, V. L. & Katilus, R. 1969 Soviet Phys. JETP, 57, 503.Google Scholar
Gantsevich, S. V., Gurevich, V. L. & Katilus, R. 1970 Soviet Phys. JETP, 59, 533.Google Scholar
Gantsevich, S. V., Gurevich, V. L. & Katilus, R. 1979 Riv. Nuovo Cim. 2, 1.CrossRefGoogle Scholar
Giguliov, V. N. 1965 Dokl. Akad. Nauk SSSR, 161, 1051.Google Scholar
Ginzburg, V. L. & Rukhadze, A. A. 1970 Waves in Magnetoactive Plasma. Nauka.Google Scholar
Gorkov, L. P., Dzyaloshinskii, I. E. & Pitaevskii, L. P. 1960 Proc. Izmiran, 17, 239.Google Scholar
Ichimaru, S., Pines, D. & Rostoker, N. 1962 Phys. Rev. Lett. 8, 231.CrossRefGoogle Scholar
Kadomtsev, B. B. 1957 Soviet Phys. JETP, 32, 934.Google Scholar
Klimontovich, Yu. L. 1971 Teor. Mat. Fiz. 9, 109.CrossRefGoogle Scholar
Klimontovich, Yu. L. 1981 Kinetic Theory for Nonideal Gases and Nonideal Plasma. Pergamon.Google Scholar
Kogan, Sh. M. & Shul'Man, A. Ya. 1969 a Soviet Phys. JETP, 56, 862.Google Scholar
Kogan, Sh. M. & Shul'Man, A. Ya. 1969 b Soviet Phys. JETP, 57, 2112.Google Scholar
Kucharenko, Yu. A. & Tichodeev, S. G. 1982 Soviet Phys. JETP, 83, 1444.Google Scholar
Onsager, L. 1931 a Phys. Rev. 37, 405.CrossRefGoogle Scholar
Onsager, L. 1931 b Phys. Rev. 38, 2265.Google Scholar
Paiva-Veretennicoff, I. & Belyi, V. V. 1985 Proceedings of 13thInternational Symposium on Rarefied Gas Dynamics, Novosibirsk, 1982, p. 1375. Plenum.CrossRefGoogle Scholar
Sadovnikov, B. I. 1965 Dokl. Akad. Nauk SSSR, 164, 785.Google Scholar