Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T16:16:41.120Z Has data issue: false hasContentIssue false

Embedding particle-in-cell simulations in global magnetohydrodynamic simulations of the magnetosphere

Published online by Cambridge University Press:  07 February 2019

Raymond J. Walker*
Affiliation:
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095-1567, USA
Giovanni Lapenta
Affiliation:
Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium Space Science Institute, 4750 Walnut St, Suite 205, Boulder, CO 80301, USA
Jean Berchem
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
Mostafa El-Alaoui
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
David Schriver
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
*
Email address for correspondence: rwalker@igpp.ucla.edu

Abstract

We have combined global magnetohydrodynamic (MHD) simulations of the solar wind and magnetosphere interaction with an implicit particle-in-cell simulation (PIC) and used this approach to model magnetic reconnection at both the dayside magnetopause and in the magnetotail plasma sheet. In this approach, we first model the magnetospheric configuration driven by the solar wind using the MHD simulation. At a time of interest (usually when a thin current sheet has formed in the MHD simulation), we load a large particle-in-cell simulation with plasma and fields based on the MHD state. We use the MHD results to set the boundary conditions on the PIC simulation. The coupling between the two models is one way – the PIC results do not change the MHD results. In these calculations, we use the UCLA global MHD code and the iPic3D implicit particle-in-cell code. In this paper we describe this technique in detail. As an example of this approach, we present PIC results on reconnection in the magnetotail during a magnetospheric substorm.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artemyev, A. V., Baumjohann, W., Petrukovich, A. A., Nakamura, R., Dandouras, I. & Fazakerley, A. 2011 Proton/electron temperature ratio in the magnetotail. Ann. Geophys. 29, 22532257.Google Scholar
Ashour-Abdalla, M., El-Alaoui, M., Goldstein, M. L., Zhou, M., Schriver, D., Richard, R., Walker, R. J., Kivelson, M. G. & Hwang, K.-J. 2011 Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nat. Phys. 7 (4), 360365.Google Scholar
Ashour-Abdalla, M., Lapenta, G., Walker, R. J., El-Alaoui, M. & Liang, H. 2015 Multiscale study of electron energization during unsteady reconnection events. J. Geophys. Res. 120, 47844799.Google Scholar
Ashour-Abdalla, M., Lapenta, G., Walker, R. J., El-Alaoui, M., Liang, H., Berchem, J. & Goldstein, M. L. 2016 Identifying the electron diffusion region in a realistic simulation of Earth’s magnetotail. Geophys. Res. Lett 43, 60056011.Google Scholar
Aunai, N., Hesse, M. & Kuznetsova, M. 2013 Electron nongyrotropy in the context of collisionless magnetic reconnection. Phys. Plasmas 20 (9), 092903.Google Scholar
Berenger, J. P. 1994 A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (2), 185200.Google Scholar
Brackbill, J. U. & Forslund, D. W. 1982 An implicit method for electromagnetic plasma simulation in two dimensions. J. Comput. Phys. 46, 271308.Google Scholar
Burch, J. L. et al. 2016 Electron-scale measurements of magnetic reconnection in space. Science 352, aaf29391-10.Google Scholar
Cercignami, C. 2012 The Boltzmann Equation and its Applications, Appl. Math. Sci., vol. 67. Springer.Google Scholar
El-Alaoui, M. 2001 Current disruption during November 24, 1996. substorm. J. Geophys. Res. 106 (A4), 62296245.Google Scholar
El-Alaoui, M., Ashour-Abdalla, M., Walker, R. J., Peroomian, V., Richard, R. L., Angelopoulos, V. & Runov, A. 2009 Substorm evolution as revealed by THEMIS satellites and a global MHD simulation. J. Geophys. Res. 114, A08221.Google Scholar
Garcia, A. L. & Alder, B. J. 1998 Generation of the Chapman–Enskog distribution. J. Comput. Phys. 140, 6670.Google Scholar
Goldman, M. V., Newman, D. L. & Lapenta, G. 2015 What can we learn about magnetotail reconnection from 2D PIC Harris–Sheet simulations? Space Sci. Rev. 199 (1), 651688.Google Scholar
Hapgood, M. A. 1992 Space physics coordinate transformations: a user guide. Planet. Space Sci. 40 (5), 71l717.Google Scholar
Innocenti, M. E., Lapenta, G., Markidis, S., Beck, A. & Vapirev, A. 2013 A multi-level multi-domain method for particle in cell plasma simulations. J. Comput. Phys. 238, 115140.Google Scholar
Kuznetsova, M. M., Hesse, M. & Winski, D. 2001 Collisionless reconnection supported by nongyrotropic pressure effects in hybrid and particle simulations. J. Geophys. Res. 106 (A3), 37993810.Google Scholar
Lapenta, G. 2012 Particle simulations of space weather. J. Comput. Phys. 231 (3), 795821.Google Scholar
Lapenta, G., Berchem, J., Zhou, M., Walker, R. J., El-Alaoui, M., Goldstein, M., Paterson, W. R., Giles, B. L., Pollock, C. J., Russell, C. T. et al. 2017 On the origin of the crescent-shaped distributions observed by MMS at the magnetopause. J. Geophys. Res. 122, 2024.Google Scholar
Lapenta, G., Ashour-Abdalla, M., Walker, R. J. & El-Alaoui, M. 2016 A multiscale study of ion heating in Earth’s Magnetotail. Geophys. Res. Lett. 43, 15524.Google Scholar
Lapenta, G., Markidis, S., Goldman, M. V. & Newman, D. L. 2010 Scales of guide field reconnection at the hydrogen mass ratio. Phys. Plasmas 17, 082106.Google Scholar
Lapenta, G., Markidis, S., Goldman, M. V. & Newman, D. L. 2015 Secondary reconnection sites in reconnection-generated flux ropes and reconnection fronts. Nat. Phys. 11 (8), 690.Google Scholar
Markidis, S., Lapenta, G. & Rizwan-Uddin, G. 2010 Multi-scale simulations of plasma with iPIC3D. Math. Comput. Simul. 80 (7), 15091519.Google Scholar
Pritchett, P. L. 2001 Geospace Environment Modeling magnetic reconnection challenge: simulations with a full particle electromagnetic code. J. Geophys. Res. 106, 3783.Google Scholar
Raeder, J., Berchem, J. & Ashour-Abdalla, M. 1998 The geospace environment modeling grand challenge: results from a global geospace circulation model. J. Geophys. Res. 103, 1478714797.Google Scholar
Raeder, J., Walker, R. J. & Ashour-Abdalla, M. 1995 The structure of the distant geomagnetic tail during long periods of northward IMF. Geophys. Res. Lett. 22 (4), 349352.Google Scholar
Ricci, P., Brackbill, J. U., Daughton, W. & Lapenta, G. 2004 Collisionless magnetic reconnection in the presence of a guide field. Phys. Plasmas 11, 41024114.Google Scholar
Ricci, P., Lapenta, G. & Brackbill, J. U. 2002 GEM reconnection challenge: implicit kinetic simulations with the physical mass ratio. Geophys. Res. Lett. 29, 2088.Google Scholar
Russell, C. T. 1971 Geophysical coordinate transformations. Cosmic Electrodyn. 2, 184.Google Scholar
Scudder, J. & Daughton, W. 2008 ‘Illuminating’ electron diffusion regions of collisionless magnetic reconnection using electron agyrotropy. J. Geophys. Res. 113, A06222.Google Scholar
Swisdak, M. 2016 Quantifying gyrotropy in magnetic reconnection. Geophys. Res. Lett. 43, 4349.Google Scholar
Walker, R. J., Lapenta, G., Liang, H., Berchem, J., Ashour-Abdalla, M. & Goldstein, M. L. 2018 Structure and dynamics of three dimensional magnetotail reconnection. J. Geophys. Res. 123, doi:10.1029/2018JA025509.Google Scholar
Zenitani, S., Hesse, M., Klimas, A., Black, C. & Kuznetsova, M. 2011 The inner structure of collisionless magnetic reconnection: the electron frame dissipation measure and Hall fields. Phys. Plasmas 18 (12), 122108.Google Scholar
Zhou, M., Ashour-Abdalla, M., Deng, X., Schriver, D., El-Alaoui, M. & Pang, Y. 2009 THEMIS observation of multiple dipolarization fronts and associated wave characteristics in the near-Earth magnetotail. Geophys. Res. Lett. 36, L20107.Google Scholar
Zhou, M., El-Alaoui, M., Lapenta, G., Berchem, J., Richard, R. L., Schriver, D. & Walker, R. J. 2018 Suprathermal electron acceleration in a reconnection magnetotail: large-scale kinetic simulation. J. Geophys. Res. 123, 80878108.Google Scholar