Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T04:03:28.819Z Has data issue: false hasContentIssue false

Formation of dipolar vortices and vortex streets due to nonlinearly interacting ion-temperature-gradient-driven modes in dense magnetoplasmas

Published online by Cambridge University Press:  12 March 2010

NAZIA BATOOL
Affiliation:
National Centre for Physics (NCP), Islamabad, Pakistan
ARSHAD M. MIRZA
Affiliation:
Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320, Pakistan (a_m_mirza@yahoo.com)

Abstract

Nonlinear equations which govern the dynamics of low-frequency (ω ⪡ ωci, where ω is the perturbation frequency of the wave and ωci is the ion gyro-frequency), ion-temperature-gradient-driven modes in the presence of equilibrium density, temperature and magnetic field gradients are derived. New set of nonlinear equations are derived. In the nonlinear case, new types of solutions in the form of dipolar vortices and vortex streets are found to exist in dense quantum plasma. These structures are found to be formed on very short spatial scales.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Markowich, P. A., Ringhofer, C. and Schmeiser, C., 1990 Semiconductor Equations. New York: Springer.CrossRefGoogle Scholar
[2]Chabrier, G., Douchin, F. and Potekhin, A. Y., 2002 J. Phys.: Condens. Matter 14, 9133; Chabrier, G., Saumon, D. and Potekhin, A. Y., 2006 J. Phys. A 39, 4411; Potekhin, A. Y., Chabrier, G., Lal, D., Hu, W. C. G. and van Adelsberg, M., 2006 ibid. 39, 4453.Google Scholar
[3]Harding, A. K. and Lai, D., 2006 Rep. Prog. Phys. 69, 2631.CrossRefGoogle Scholar
[4]Marklund, M. and Shukla, P. K., 2006 Rev. Mod. Phys. 78, 591.CrossRefGoogle Scholar
[5]Malkin, V. M., Fisch, N. J. and Wurtle, J. S., 2007 Phys. Rev. E 75, 026404.CrossRefGoogle Scholar
[6]Gloge, D. and Marcuse, D., 1969 J. Opt. Soc. Am. 59, 1629; Barnes, W. L., Dereux, A. and Ebbesen, T. W., 2003 Nature (London) 424, 824 (2003); Wang, K. and Mittleman, D. M., 2006 Phys. Rev. Lett. 96, 157401.CrossRefGoogle Scholar
[7]Haas, F., Garcia, L. G., Goedert, J. and Manfredi, G., 2003 Phys. Plasmas 10, 3858.CrossRefGoogle Scholar
[8]Haas, F., 2005 Phys. Plasmas 12, 062117.CrossRefGoogle Scholar
[9]Shokri, B. and Rukhadze, A. A., 1999 Phys. Plasmas 6, 4467.CrossRefGoogle Scholar
[10]Shukla, P. K., Birk, G. T. and Bingham, R., 1995 Geophys. Res. Lett. 22, 671.CrossRefGoogle Scholar
[11]Ali, S., Shukla, N. and Shukla, P. K., 2007 Europhys. Lett. 78, 45001.CrossRefGoogle Scholar
[12]Hong, B. G. and Horton, W., 1990 Phys. Fluids B 2, 978.CrossRefGoogle Scholar
[13]Shukla, P. K. and Weiland, J., 1989 Phys. Lett. A 136, 59.CrossRefGoogle Scholar
[14]Shukla, P. K. and Stenflo, L., 2003 Physica Scripta 68, 63.CrossRefGoogle Scholar
[15]Haque, Q., 2008 Phys. Plasmas 15, 094502.CrossRefGoogle Scholar
[16]Mirza, A. M. and Shukla, P. K., 2008 Phys. Plasmas 15, 022106.CrossRefGoogle Scholar
[17]Stenflo, L., 1996 Phys. Lett. A 222, 378.CrossRefGoogle Scholar
[18]Malkin, V. M., Fisch, N. J. and Wurtele, J. S., 2007 Phys. Rev. E 75, 02640.CrossRefGoogle Scholar
[19]Lindl, J. D., Amendt, P., Berger, R. L., Glendenning, S. G. and Glenzer, S. H., Phys. Plasmas 11, 339 (2004).CrossRefGoogle Scholar