Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T06:18:57.907Z Has data issue: false hasContentIssue false

The galactic dynamo and superbubbles

Published online by Cambridge University Press:  17 December 2015

Russell M. Kulsrud*
Affiliation:
Princeton University, Department of Astrophysical Sciences, Princeton, NJ 08544, USA
*
Email address for correspondence: rkulsrud@astro.princeton.edu

Abstract

In previous galactic dynamo theories of the origin of the magnetic field in our galaxy, the subject of flux-freezing has been omitted. As a consequence, the equation of mass flow has generally also been omitted, particularly in the halo where the galactic gravitational field will operate on the mass flow. In this paper, it has been shown that this neglect could have serious consequences for the results obtained from those galactic dynamo simulations that include the halo. A modification of these dynamo theories is proposed which involves the expulsion of very small pieces of the magnetic field lines, rather than the wholesale expulsion of the complete magnetic lines encapsulated in the previous theories. This expulsion is accomplished by a spike instability that arises from superbubbles when they break out of the galactic disc and their shells fragment. This leads to a cut in the lines of force that still remain in the disc. Subsequently, normal disc turbulence rotates the cut lines and thus dissipates their mean flux, removing them from a role in the dynamo theory. This new process takes a length of time comparable to, but slightly longer than, the previous growth time of the disc dynamo, but avoids the previous difficulties associated with flux freezing and flux expulsion.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baryshnikova, Iu., Shukurov, A., Ruzmaikin, A. & Sokoloff, D. D. 1987 Generation of large-scale magnetic fields in spiral galaxies. Astron. Astrophys. 177, 2741.Google Scholar
Beck, R., Brandenburg, A., Moss, D., Shukurov, A. & Sokoloff, D. 1996 Galactic magnetism: recent developments and perspectives. Annu. Rev. Astron. Astrophys. 34, 155206.CrossRefGoogle Scholar
Binney, J. & Tremaine, S. 1987 Galactic Dynamics. Princeton University Press.Google Scholar
Brandenburg, A., Donner, K. J., Moss, D., Shukurov, A. M., Sokoloff, D. D. & Tuominen, I. 1992 Dynamos in discs and halos of galaxies. Astron. Astrophys. 259, 453461.Google Scholar
Brandenburg, A., Donner, K. J., Moss, D., Shukurov, A. M., Sokoloff, D. D. & Tuominen, I. 1993 Vertical magnetic fields above the discs of spiral galaxies. Astron. Astrophys. 271, 3650.Google Scholar
Dickey, J. M. & Lockman, F. J. 1990 H I in the galaxy. Annu. Rev. Astron. Astrophys. 28, 215261.Google Scholar
Dobler, W., Poezd, A. & Shukurov, A. 1996 Galactic dynamos have movable boundaries. Astron. Astrophys. 312, 663669.Google Scholar
Donner, W. & Brandenburg, A. 1990 Generation and interpretation of galactic magnetic fields. Astron. Astrophys. 240, 289298.Google Scholar
Elmegreen, B. G. & Clemens, C. 1985 On the formation rate of galactic clusters in clouds of various masses. Astrophys. J. 294, 523532.CrossRefGoogle Scholar
Ferrière, D. 1993 Magnetic diffusion due to supernova explosions and superbubbles in the Galactic disc. Astrophys. J. 409, 248298.Google Scholar
Ferrière, K. 1998 The hot gas filling factor in our galaxy. Astrophys. J. 503, 700716.Google Scholar
Heiles, C. 1974 Low-density ionized interstellar gas as revealed by interstellar optical and H I radio lines. Astrophys. J. 193L, 3133.Google Scholar
Heiles, C. 1976 Low-density ionized interstellar gas as revealed by interstellar optical and H I radio lines. Astron. Soc. Pacific 88R, 607R.Google Scholar
Heiles, C. 1979 H I shells and supershells. Astrophys. J. 229, 533537.CrossRefGoogle Scholar
Heiles, C. 1980 Is the intercloud medium pervasive? Astrophys. J. 235, 833839.Google Scholar
Heiles, C. 1984 H I shells, supershells, shell-like objects, and ‘worms’. Astrophys. J. Suppl. 55, 585595.Google Scholar
Heiles, C. 1987 Supernovae versus models of the interstellar medium and the gaseous halo. Astrophys. J. 315, 555566.Google Scholar
Heiles, C. 1990 Clustered supernovae versus the gaseous disk and halo. Astrophys. J. 354, 483491.Google Scholar
Kennicut, R. C., Edgar, B. K. & Hodge, P. 1989 Properties of H II region populations in galaxies. II – The H II region luminosity function. Astrophys. J. 337, 761781.CrossRefGoogle Scholar
Kulkarni, S. R. & Fich 1985 The fraction of high velocity dispersion H I in the Galaxy. Astrophys. J. 289, 792802.Google Scholar
Kulsrud, R. M. 1999 A critical review of galactic dynamos. Annu. Rev. Astron. Astrophys. 37, 3764.CrossRefGoogle Scholar
Kulsrud, R. M. 2010 The origin of our galactic magnetic field. Astron. Nachr. 331, 2226.Google Scholar
Kulsrud, R. M., Cen, R., Ostriker, J. P. & Ryu, D. 1997 The protogalactic origin for cosmic magnetic fields. Astrophys. J. 480, 481491.Google Scholar
Kulsrud, R. M. & Zweibel, E. G. 2008 On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71, 133.Google Scholar
Mac Low, M.-M. & McCray, R. 1988 Superbubbles in disk galaxies. Astrophys. J. 324, 776785.Google Scholar
Mac Low, M.-M., McCray, R. & Norman, M. 1989 Superbubble blowout dynamics. Astrophys. J. 337, 141154.Google Scholar
McCray, R. & Kafatos, M. 1987 Supershells and propagating star formation. Astrophys. J. 317, 190196.Google Scholar
Moss, D. & Brandenburg, A. 1992 The influence of boundary conditions on the excitation of disk dynamo modes. Astron. Astrophys. 256, 371374.Google Scholar
Moss, D., Brandenburg, A., Donner, K. J. & Thomsson, M. 1993 Models for the magnetic field of M81. Astrophys. J. 409, 179189.Google Scholar
Moss, D. & Sokoloff, D. 2013 Magnetic field reversals and galactic dynamos. Geophys. Astrophys. Fluid Dyn. 107, 497505.Google Scholar
Parker, E. N. 1971 The generation of magnetic fields in astrophysical bodies. II. The galactic field. Astrophys. J. 163, 255278.Google Scholar
Parker, E. N. 1992 Fast dynamos, cosmic rays, and the Galactic magnetic field. Astrophys. J. 401, 137145.CrossRefGoogle Scholar
Poezd, A., Shukurov, A. & Sokoloff, D. 1993 Global magnetic patterns in the milky-way and the Andromeda Nebula. Mon. Not. R. Astron. Soc. 264, 285297.Google Scholar
Rafikov, R. & Kulsrud, R. M. 2000 Magnetic flux expulsion in powerful superbubble explosions and the alpha–omega dynamo. Mon. Not. R. Astron. Soc. 314, 839848.Google Scholar
Rand, R. J. & Kulkarni, S. R. 1989 The local Galactic magnetic field. Astrophys. J. 343, 760772.Google Scholar
Ruzmaikin, A. A., Shukurov, A. M. & Sokoloff, D. D. 1988 Magnetic Fields in Galaxies. Kluwer Academic.CrossRefGoogle Scholar
Spitzer, L. Jr. 1962 Physics of Fully Ionized Gases. Interscience.Google Scholar
Steenbeck, M., Krause, F. & Rädler, K.-H. 1966 Berechnung der mittleren LORENTZ-Feldstarke fur ein elektrisch leitendes Medium in turbulenter, durch CORIOLIS-Krafte beeinflusster Bewegung. Z. Naturforsch. 26a, 369376.Google Scholar
Tenorio-Tagle, G., Silich, S. A., Kunth, D. & Terlevich, E. 1999 The evolution of superbubbles and the detection of Lyalpha in star-forming galaxies. Mon. Not. R. Astron. Soc. 309, 332342.Google Scholar
Weaver, R., McCray, R., Castor, J., Shapiro, P. & Moore, R. 1977 Interstellar bubbles. II – Structure and evolution. Astrophys. J. 218, 377395.Google Scholar