Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T23:43:49.019Z Has data issue: false hasContentIssue false

Geometric electrostatic particle-in-cell algorithm on unstructured meshes

Published online by Cambridge University Press:  21 July 2021

Zhenyu Wang*
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
Hong Qin
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
Benjamin Sturdevant
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
C.S. Chang
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
*
Email address for correspondence: zwang3@pppl.gov

Abstract

We present a geometric particle-in-cell (PIC) algorithm on unstructured meshes for studying electrostatic perturbations with frequency lower than electron gyrofrequency in magnetized plasmas. In this method, ions are treated as fully kinetic particles and electrons are described by the adiabatic response. The PIC method is derived from a discrete variational principle on unstructured meshes. To preserve the geometric structure of the system, the discrete variational principle requires that the electric field is interpolated using Whitney 1-forms, the charge is deposited using Whitney 0-forms and the electric field is computed by discrete exterior calculus. The algorithm has been applied to study the ion Bernstein wave (IBW) in two-dimensional magnetized plasmas. The simulated dispersion relations of the IBW in a rectangular region agree well with theoretical results. In a two-dimensional circular region with fixed boundary condition, the spectrum and eigenmode structures of the IBW are obtained from simulations. We compare the energy conservation property of the geometric PIC algorithm derived from the discrete variational principle with that of previous PIC methods on unstructured meshes. The comparison shows that the new PIC algorithm significantly improves the energy conservation property.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernstein, I.B. 1958 Waves in a plasma in a magnetic field. Phys. Rev. 109 (1), 1021.CrossRefGoogle Scholar
Birdsall, C. & Langdon, A.B. 1991 Plasma Physics via Computer Simulation. Adam Hilger.CrossRefGoogle Scholar
Boris, J. 1970 In Proceedings of the Fourth Conference on Numerical Simulation of Plasmas, p. 3. Naval Research Laboratory.Google Scholar
Bossavit, A. 1988 Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc. Phys. Sci. Meas. Instrum. Manage. Educ. Rev. 135 (8), 493.Google Scholar
Bossavit, A. 1998 Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements. Academic Press.Google Scholar
Burby, J.W. 2017 Finite-dimensional collisionless kinetic theory. Phys. Plasmas 24 (3), 032101.CrossRefGoogle Scholar
Celik, M., Santi, M., Cheng, S., Martínez-Sánchez, M. & Peraire, J. 2003 Hybrid-pic simulation of hall thrusterplume on an unstructured grid with dsmc collisions. In 28th International Electric Propulsion. Conference, Toulouse, March 2003.Google Scholar
Chang, C.S., Ku, S., Diamond, P.H., Lin, Z., Parker, S., Hahm, T.S. & Samatova, N. 2009 Compressed ion temperature gradient turbulence in diverted tokamak edge. Phys. Plasmas 16 (5), 056108.CrossRefGoogle Scholar
Chang, C.S., Ku, S., Tynan, G.R., Hager, R., Churchill, R.M., Cziegler, I., Greenwald, M., Hubbard, A.E. & Hughes, J.W. 2017 Fast low-to-high confinement mode bifurcation dynamics in a tokamak edge plasma gyrokinetic simulation. Phys. Rev. Lett. 118 (17).CrossRefGoogle Scholar
Chang, C.S., Ku, S. & Weitzner, H. 2004 Numerical study of neoclassical plasma pedestal in a tokamak geometry. Phys. Plasmas 11 (5), 26492667.CrossRefGoogle Scholar
Dawson, J.M. 1983 Particle simulation of plasmas. Rev. Mod. Phys. 55 (2), 403447.CrossRefGoogle Scholar
Dawson, J.M., Okuda, H. & Rosen, B. 1976 Collective transport in plasmas. In Methods in Computational Physics: Advances in Research and Applications, pp. 281–325. Elsevier.CrossRefGoogle Scholar
Day, D.M. 2011 Numerical experiments on unstructured pic stability. Tech. Rep. Sandia National Laboratories.CrossRefGoogle Scholar
Desbrun, M., Kanso, E. & Tong, Y. 2008 Discrete differential forms for computational modeling. In Discrete Differential Geometry, pp. 287–324. Birkhäuser.CrossRefGoogle Scholar
Ellison, C.L., Burby, J.W. & Qin, H. 2015 Comment on “symplectic integration of magnetic systems”: a proof that the boris algorithm is not variational. J. Comput. Phys. 301, 489493.CrossRefGoogle Scholar
Gatsonis, N.A. & Spirkin, A. 2009 A three-dimensional electrostatic particle-in-cell methodology on unstructured Delaunay–Voronoi grids. J. Comput. Phys. 228 (10), 37423761.CrossRefGoogle Scholar
Glasser, A.S. & Qin, H. 2020 The geometric theory of charge conservation in particle-in-cell simulations. J. Plasma Phys. 86 (3), 835860303.CrossRefGoogle Scholar
Han, D., Wang, P., He, X., Lin, T. & Wang, J. 2016 A 3d immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of Plasma–Lunar surface interactions. J. Comput. Phys. 321, 965980.CrossRefGoogle Scholar
He, Y., Qin, H., Sun, Y., Xiao, J., Zhang, R. & Liu, J. 2015 a Hamiltonian time integrators for Vlasov-Maxwell equations. Phys. Plasmas 22 (12), 124503.CrossRefGoogle Scholar
He, Y., Sun, Y., Liu, J. & Qin, H. 2015 b Volume-preserving algorithms for charged particle dynamics. J. Comput. Phys. 281, 135147.CrossRefGoogle Scholar
He, Y., Sun, Y., Liu, J. & Qin, H. 2016 a Higher order volume-preserving schemes for charged particle dynamics. J. Comput. Phys. 305, 172184.CrossRefGoogle Scholar
He, Y., Sun, Y., Qin, H. & Liu, J. 2016 b Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations. Phys. Plasmas 23 (9), 092108.CrossRefGoogle Scholar
He, Y., Sun, Y., Zhang, R., Wang, Y., Liu, J. & Qin, H. 2016 c High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields. Phys. Plasmas 23 (9), 092109.CrossRefGoogle Scholar
He, Y., Zhou, Z., Sun, Y., Liu, J. & Qin, H. 2017 Explicit k-symplectic algorithms for charged particle dynamics. Phys. Lett. A 381 (6), 568573.CrossRefGoogle Scholar
Hirani, A.N. 2003 Discrete exterior calculus. PhD thesis, California Institute of Technology.Google Scholar
Hockney, R. & Eastwood, J.W. 1981 Computer Simulation using Particles. McGraw-Hill International Book Co.Google Scholar
Horton, W. 1999 Drift waves and transport. Rev. Mod. Phys. 71 (3), 735778.CrossRefGoogle Scholar
Hu, Y., Miecnikowski, M., Chen, Y. & Parker, S. 2018 Fully kinetic simulation of ion-temperature-gradient instabilities in tokamaks. Plasma 1 (1), 105118.CrossRefGoogle Scholar
Kormann, K. & Sonnendrücker, E. 2021 Energy-conserving time propagation for a structure- preserving particle-in-cell Vlasov–Maxwell solver. J. Comput. Phys. 425, 109890.CrossRefGoogle Scholar
Kraus, M., Kormann, K., Morrison, P.J. & Sonnendrücker, E. 2017 GEMPIC: geometric electromagnetic particle-in-cell methods. J. Plasma Phys. 83 (4), 905830401.CrossRefGoogle Scholar
Ku, S., Chang, C.-S., Adams, M., Cummings, J., Hinton, F., Keyes, D., Klasky, S., Lee, W., Lin, Z., Parker, S. & the CPES team 2006 Gyrokinetic particle simulation of neoclassical transport in the pedestal/scrape-off region of a tokamak plasma. J. Phys.: Conf. Ser. 46, 8791.Google Scholar
Ku, S., Chang, C.S., Hager, R., Churchill, R.M., Tynan, G.R., Cziegler, I., Greenwald, M., Hughes, J., Parker, S.E., Adams, M.F., D'Azevedo, E. & Worley, P. 2018 A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1. Phys. Plasmas 25 (5), 056107.CrossRefGoogle Scholar
Langdon, A.B. 1970 Effects of the spatial grid in simulation plasmas. J. Comput. Phys. 6 (2), 247267.CrossRefGoogle Scholar
Lee, T.D. 1983 Can time be a discrete dynamical variable? Phys. Lett. B 122 (3-4), 217220.CrossRefGoogle Scholar
Li, Y., He, Y., Sun, Y., Niesen, J., Qin, H. & Liu, J. 2019 Solving the Vlasov–Maxwell equations using Hamiltonian splitting. J. Comput. Phys. 396, 381399.CrossRefGoogle Scholar
Lohi, J. & Kettunen, L. 2021 Whitney forms and their extensions. J. Comput. Appl. Math. 393, 113520.CrossRefGoogle Scholar
Marsden, J.E. & West, M. 2001 Discrete mechanics and variational integrators. Acta Numer. 10, 357514.CrossRefGoogle Scholar
Miecnikowski, M.T., Sturdevant, B.J., Chen, Y. & Parker, S.E. 2018 Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions. Phys. Plasmas 25 (5), 055901.CrossRefGoogle Scholar
Moon, H., Teixeira, F.L. & Omelchenko, Y.A. 2015 Exact charge-conserving Scatter–Gather algorithm for particle-in-cell simulations on unstructured grids: a geometric perspective. Comput. Phys. Commun. 194, 4353.CrossRefGoogle Scholar
Morrison, P.J. 2017 Structure and structure-preserving algorithms for plasma physics. Phys. Plasmas 24 (5), 055502.CrossRefGoogle Scholar
Nedelec, J.C. 1980 Mixed finite elements in $r^3$. Numer. Math. 35 (3), 315341.CrossRefGoogle Scholar
Perse, B., Kormann, K. & Sonnendrücker, E. 2021 Geometric particle-in-cell simulations of the Vlasov–Maxwell system in curvilinear coordinates. SIAM J. Sci. Comput. 43 (1), B194B218.CrossRefGoogle Scholar
Potter, D. 1973 Computational Physics. John Weily.Google Scholar
Qin, H. 2020 Machine learning and serving of discrete field theories. Sci. Rep. 10, 19329.CrossRefGoogle ScholarPubMed
Qin, H. & Guan, X. 2008 Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields. Phys. Rev. Lett. 100, 035006.CrossRefGoogle ScholarPubMed
Qin, H., Guan, X. & Tang, W.M. 2009 Variational symplectic algorithm for guiding center dynamics and its application in tokamak geometry. Phys. Plasmas 16 (4), 042510.CrossRefGoogle Scholar
Qin, H., Liu, J., Xiao, J., Zhang, R., He, Y., Wang, Y., Sun, Y., Burby, J.W., Ellison, L. & Zhou, Y. 2016 Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations. Nucl. Fusion 56 (1), 014001.CrossRefGoogle Scholar
Qin, H., Zhang, S., Xiao, J., Liu, J., Sun, Y. & Tang, W.M. 2013 Why is boris algorithm so good? Phys. Plasmas 20 (8), 084503.CrossRefGoogle Scholar
Rapetti, F. & Bossavit, A. 2009 Whitney forms of higher degree. SIAM J. Numer. Anal. 47 (3), 23692386.CrossRefGoogle Scholar
Spirkin, A. & Gatsonis, N.A. 2004 Unstructured 3d PIC simulations of the flow in a retarding potential analyzer. Comput. Phys. Commun. 164 (1-3), 383389.CrossRefGoogle Scholar
Squire, J., Qin, H. & Tang, W.M. 2012 a Geometric integration of the vlasov-maxwell system with a variational particle-in-cell scheme. Phys. Plasmas 19 (8), 084501.CrossRefGoogle Scholar
Squire, J., Qin, H. & Tang, W.M. 2012 b Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme. Tech. Rep. PPPL-4748. Princeton Plasma Physics Laboratory.CrossRefGoogle Scholar
Sturdevant, B. 2016 Fully kinetic ion models for magnetized plasma simulations. PhD thesis, University of Colorado.Google Scholar
Sturdevant, B.J., Chen, Y. & Parker, S.E. 2017 Low frequency fully kinetic simulation of the toroidal ion temperature gradient instability. Phys. Plasmas 24 (8), 081207.CrossRefGoogle Scholar
Veselov, A.P. 1988 Integrable discrete-time systems and difference operators. Funct. Anal. Appl. 22 (2), 8393.CrossRefGoogle Scholar
Weiland, J. 2012 Stability and Transport in Magnetic Confinement Systems. Springer.CrossRefGoogle Scholar
Whitney, H. 1957 Geometric Integration Theory. Princeton University Press.CrossRefGoogle Scholar
Xiao, J., Liu, J., Qin, H. & Yu, Z. 2013 A variational multi-symplectic particle-in-cell algorithm with smoothing functions for the Vlasov-Maxwell system. Phys. Plasmas 20 (10), 102517.CrossRefGoogle Scholar
Xiao, J., Liu, J., Qin, H., Yu, Z. & Xiang, N. 2015 a Variational symplectic particle-in-cell simulation of nonlinear mode conversion from extraordinary waves to Bernstein waves. Phys. Plasmas 22 (9), 092305.CrossRefGoogle Scholar
Xiao, J. & Qin, H. 2019 Field theory and a structure-preserving geometric particle-in-cell algorithm for drift wave instability and turbulence. Nucl. Fusion 59 (10), 106044.CrossRefGoogle Scholar
Xiao, J. & Qin, H. 2021 Explicit structure-preserving geometric particle-in-cell algorithm in curvilinear orthogonal coordinate systems and its applications to whole-device 6d kinetic simulations of tokamak physics. Plasma Sci. Technol. 23 (5), 055102.CrossRefGoogle Scholar
Xiao, J., Qin, H. & Liu, J. 2018 Structure-preserving geometric particle-in-cell methods for Vlasov-Maxwell systems. Plasma Sci. Technol. 20 (11), 110501.CrossRefGoogle Scholar
Xiao, J., Qin, H., Liu, J., He, Y., Zhang, R. & Sun, Y. 2015 b Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems. Phys. Plasmas 22 (11), 112504.CrossRefGoogle Scholar
Xiao, J., Qin, H., Liu, J. & Zhang, R. 2017 Local energy conservation law for a spatially-discretized Hamiltonian Vlasov-Maxwell system. Phys. Plasmas 24 (6), 062112.CrossRefGoogle Scholar
Xiao, J., Qin, H., Morrison, P.J., Liu, J., Yu, Z., Zhang, R. & He, Y. 2016 Explicit high-order noncanonical symplectic algorithms for ideal two-fluid systems. Phys. Plasmas 23 (11), 112107.CrossRefGoogle Scholar
Zhang, R., Liu, J., Qin, H., Wang, Y., He, Y. & Sun, Y. 2015 Volume-preserving algorithm for secular relativistic dynamics of charged particles. Phys. Plasmas 22 (4), 044501.CrossRefGoogle Scholar
Zheng, J., Chen, J., Lu, F., Xiao, J., An, H. & Shen, L. 2020 Structure-preserving electromagnetic–kinetic simulations of lower hybrid-wave injection and current drive. Plasma Phys. Control. Fusion 62 (12), 125020.CrossRefGoogle Scholar