Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T11:33:03.711Z Has data issue: false hasContentIssue false

Gravitational instability of rotating magnetized quantum anisotropic plasma

Published online by Cambridge University Press:  09 March 2017

Shraddha Argal
Affiliation:
UIT, Barkatullah University Bhopal 462026, M.P., India
Anita Tiwari
Affiliation:
UIT, Barkatullah University Bhopal 462026, M.P., India
R. P. Prajapati
Affiliation:
Department of Pure and Applied Physics, Guru Ghasidas Central University, Bilaspur 495009, C.G., India
P. K. Sharma*
Affiliation:
UIT, Barkatullah University Bhopal 462026, M.P., India
*
Email address for correspondence: pk_sharma69123@rediffmail.com

Abstract

The present problem deals with the study of gravitational (Jeans) instability of magnetized, rotating, anisotropic plasmas considering quantum effects. The basic equations of the considered system are constructed using combined Chew–Goldberger–Low (CGL) fluid model and quantum magnetohydrodynamic (QMHD) fluid model. A dispersion relation is obtained using the normal mode technique which is discussed for transverse and longitudinal modes of propagation. It is found that a rotating quantum plasma influences the gravitational mode in transverse propagation but not in longitudinal propagation. The presence of rotation decreases the critical wavenumber and it has a stabilizing effect on the Jeans instability criterion of magnetized quantum plasma in transverse propagation. The firehose instability is unaffected due to the presence of uniform rotation and quantum corrections. We observe from the numerical analysis that region of instability and critical Jeans wavenumber are both decreased due to the presence of uniform rotation. The stabilizing influence of uniform rotation is observed for magnetized, rotating, anisotropic plasmas in the presence of quantum correction. In the case of a longitudinal mode of propagation we found the Jeans instability criterion is not affected by rotation. The quantum diffraction term has a stabilizing effect on the growth rate of the Jeans instability when the wave propagates along the direction of the magnetic field.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbari-Moghanjoughi, M. 2014 Physical interpretation of Jeans instability in quantum plasmas. Phys. Plasmas 21, 082117.CrossRefGoogle Scholar
Argal, S., Tiwari, A. & Sharma, P. K. 2014 Jeans instability of a rotating self-gravitating viscoelastic fluid. Europhys. Lett. 108, 35003.CrossRefGoogle Scholar
Bhatia, P. K. 1968 Gravitational instability of a rotating anisotropic plasma with the inclusion of finite Larmor radius effect. Z. Astrophysik 69, 363367.Google Scholar
Bhatia, P. K. & Chhonkar, R. P. S. 1985 Instability of rotating isotropic and anisotropic plasmas. Astrophys. Space Sci. 114, 135149.CrossRefGoogle Scholar
Bora, M. P. & Nayyar, N. K. 1991 Gravitational instability of a heat-conducting plasma. Astrophys. Space Sci. 179, 313320.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamics and Hydromagnetic Stability, p. 585. Clarendon.Google Scholar
Chew, G. F., Goldberger, M. L. & Low, F. E. 1956 The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc. R. Soc. Lond. A 236, 112118.Google Scholar
Chhajlani, R. K. & Vyas, M. K. 1988 Effect of thermal conductivity on the gravitational instability of a magnetized rotating plasma through a porous medium in the presence of suspended particles. Astrophys. Space Sci. 145, 223240.CrossRefGoogle Scholar
Ferriere, K. M. 2004 Low-frequency linear waves and instabilities in uniform and stratified plasmas: the role of kinetic effects. Nonlinear Process. Geophys. 11, 731743.CrossRefGoogle Scholar
Gliddon, E. C. 1966 Gravitational instability of anisotropic plasma. Astrophys. J. 145, 583588.CrossRefGoogle Scholar
Haas, F. 2005 A magnetohydrodynamic model for quantum plasmas. Phys. Plasmas 12, 062117.CrossRefGoogle Scholar
Haas, F. 2011 Quantum Plasmas an Hydrodynamic Approach. Springer.CrossRefGoogle Scholar
Hau, L.-N. & Wang, B.-J. 2013 Effects of Hall current and electron temperature anisotropy on proton fire-hose instabilities. Phys. Plasmas 20, 102120.CrossRefGoogle Scholar
Hoshoudy, G. 2012 Quantum effects on the Rayleigh–Taylor instability of stratified fluid/plasma through Brinkman porous media. J. Porous Media 15, 373381.CrossRefGoogle Scholar
Hoshoudy, G. A. 2009 Quantum effects on the Rayleigh–Taylor instability in a horizontal inhomogeneous rotating plasma. Phys. Plasmas 16, 064501.Google Scholar
Jain, S., Sharma, P. & Chhajlani, R. K. 2014 Influence of rotation and FLR corrections on self-gravitational Jeans instability in quantum plasma. J. Phys. Conf. Ser. 534, 012056.CrossRefGoogle Scholar
Jain, S., Sharma, P. & Chhajlani, R. K. 2015 Jeans instability of magnetized quantum plasma: effect of viscosity, rotation and finite Larmor radius corrections. AIP Conf. Proc. 1670, 030013.CrossRefGoogle Scholar
Jamil, M., Rasheed, A., Rozina, C., Jung, Y.-D. & Salimullah, M. 2015 Jeans instability with exchange effects in quantum dusty magnetoplasmas. Phys. Plasmas 22, 082113.CrossRefGoogle Scholar
Jeans, J. H. 1902 The stability of a spherical nebula. Phil. Trans. R. Soc. Lond. A 199, 312320.Google Scholar
Kawaler, S. D., Sekii, T. & Gough, D. 1999 Prospects for measuring differential rotation in white dwarfs through asteroseismology. Astrophys. J. 516, 349365.CrossRefGoogle Scholar
Kulsrud, R. M. 2004 Plasma Physics for Astrophysics. Princeton University Press.Google Scholar
Lundin, J., Marklund, M. & Brodin, G. 2008 Modified Jeans instability criteria for magnetized systems. Phys. Plasmas 15, 072116.CrossRefGoogle Scholar
Masood, W., Salimullah, M. & Shah, H. A. 2008 A quantum hydrodynamic model for multicomponent quantum magnetoplasma with Jeans term. Phys. Lett. A 372, 67576760.CrossRefGoogle Scholar
Mehdian, H., Hajisharifi, K. & Hasanbeigi, A. 2014 The effect of plasma background on the instability of two non-parallel quantum plasma shells in whole K space. Phys. Plasmas 21, 072106.CrossRefGoogle Scholar
Pines, D. 1961 Classical and quantum plasmas. J. Nucl. Energy C: Plasma Phys. 2, 517.CrossRefGoogle Scholar
Prajapati, R. P. 2014 Low frequency waves and gravitational instability in homogeneous magnetized gyrotropic quantum plasma. Phys. Plasmas 21, 112101.CrossRefGoogle Scholar
Prajapati, R. P. & Chhajlani, R. K. 2014 Effect of quantum corrections on the Jeans instability of self-gravitating viscoelastic dusty fluid. Astrophys. Space Sci. 350, 637644.CrossRefGoogle Scholar
Prajapati, R. P., Parihar, A. K. & Chhajlani, R. K. 2008 Self-gravitational instability of rotating anisotropic heat-conducting plasma. Phys. Plasmas 15, 012107.CrossRefGoogle Scholar
Prajapati, R. P., Pensia, R. K., Kaothekar, S. & Chhajlani, R. K. 2010 Self-gravitational instability of rotating viscous Hall plasma with arbitrary radiative heat-loss functions and electron inertia. Astrophy. Space Sci. 327, 139154.CrossRefGoogle Scholar
Ren, H., Wu, Z., Cao, J. & Chu, P. K. 2009 Jeans instability in quantum magnetoplasma with resistive effects. Phys. Plasmas 16, 072101.Google Scholar
Shan, S. A. & Mushtaq, A. 2011 Role of Jeans instability in multi-component quantum plasmas in the presence of Fermi pressure. Chin. Phys. Lett. 28, 075204.CrossRefGoogle Scholar
Sharma, P. & Chhajlani, R. K. 2013 The effect of finite Larmor radius corrections on Jeans instability of quantum plasma. Phys. Plasmas 20, 092101.CrossRefGoogle Scholar
Sharma, P. & Chhajlani, R. K. 2014 The effect of spin induced magnetization on Jeans instability of viscous and resistive quantum plasma. Phys. Plasmas 21, 032101.CrossRefGoogle Scholar
Sharma, P. & Chhajlani, R. K. 2015 Effect of spin-induced magnetization and Hall current on self-gravitational instability of magnetized viscous quantum plasma. J. Plasma Phys. 81, 905810208,1–18.CrossRefGoogle Scholar
Sharma, R. C. & Singh, B. 1988 Gravitational instability of a rotating and partially-ionized plasma in the presence of variable magnetic field. Astrophys. Space Sci. 143, 233239.CrossRefGoogle Scholar
Shukla, P. K. & Eliasson, B. 2007 Nonlinear instability and dynamics of polaritons in quantum systems. New J. Phys. 9, 98.CrossRefGoogle Scholar
Shukla, P. K. & Eliasson, B. 2010 Nonlinear aspects of quantum plasma physics. Phys.—Usp. 53, 5176.CrossRefGoogle Scholar
Shukla, P. K. & Stenflo, L. 2006 Jeans instabilities in quantum dusty plasmas. Phys. Lett. A 355, 378380.CrossRefGoogle Scholar
Shukla, P. K. & Stenflo, L. 2008 Quantum Hall-MHD equations for a non-uniform dense magnetoplasma with electron temperature anisotropy. J. Plasma Phys. 74, 575579.CrossRefGoogle Scholar
Singh, B. & Kalra, G. L. 1986 Gravitational instability of thermally anisotropic plasma. Astrophys. J. 304, 610.CrossRefGoogle Scholar
Son, S. 2014 Two-stream instabilities in degenerate quantum plasmas. Phys. Lett. A 378, 25052508.CrossRefGoogle Scholar
Szkudlarek, M., GONDEK-ROSINSKA, D., Ansorg, M. & Villain, L. 2014 The effect of rotation on the properties of neutron stars. PTA Proceedings 1, 132135.Google Scholar
Tandon, J. N. & Talwar, S. P. 1963 Stability of a rotating plasma with anisotropic pressure. Nucl. Fusion 3, 7577.CrossRefGoogle Scholar
Tiwari, A., Argal, S. & Sharma, P. K. 2015 Rayleigh–Taylor instability of a stratified magnetized quantum Plasma in a porous and incompressible medium. Indian J. Phys. 89, 13131319.CrossRefGoogle Scholar