Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T04:26:09.454Z Has data issue: false hasContentIssue false

A guiding centre Vlasov equation and its application to Alfvén waves

Published online by Cambridge University Press:  13 March 2009

Jules A. Fejer
Affiliation:
Department of Applied Electrophysics, University of California, San Diego and Institute for Pure and Applied Physical Sciences
Joseph R. Kan
Affiliation:
Department of Applied Electrophysics, University of California, San Diego and Institute for Pure and Applied Physical Sciences

Abstract

Guiding centre approximations are used to derive the dielectric tensor of a collisionless plasma. This approximate dielectric tensor is used to obtain the dispersion relation of Alfvén waves in a warm plasma. In a ‘low/ β’ equilibrium plasma Alfvén waves are shown to suffer considerable Landau damping if the propagation vector is almost perpendicular to the magnetic field. In a non- equilibrium plasma Alfvén waves can be generated by ‘negative Landau damping’ even if β is low. For sufficiently high β the well-known ‘garden hose’ instability can occur and is then probably dominant. The importance of these two instabilities in the magnetosphere and in the solar wind is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhiezer, A. I., Kitsenko, A. B. & Stepanov, K. N. 1961 Soviet Physics-JETP, 13, 1311.Google Scholar
Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G. & Stepanov, K. N. 1967 Collective Oscillations in a Plasma, pp. 5355, 85–86. MIT Press.Google Scholar
Alfvén, & Fälthammer, C.-G. 1963 Cosmical Electrodynamics, Fundamental Principles, pp. 161169. Oxford: Clarendon Press.Google Scholar
Alfvé, H. 1967 Space Sci. Rev. 7, 140.CrossRefGoogle Scholar
Banos, A. Jun, 1967 J. Plasma Phys. 1, 305316.CrossRefGoogle Scholar
Barnes, A. 1966 Phys. Fluids, 9.CrossRefGoogle Scholar
Braginskii, S. I. & Kazantsev, A. P. 1960 Magnetohydrodynamic waves in a rarefied plasma. In Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol IV, pp. 2631. Pergamon Press.Google Scholar
Cummings, W. D., O'Sullivan, R. J., Cline, N. E. & Coleman, P. L. Jun, 1968 Trans. Am. Geophys. Un. 49, 227.Google Scholar
Fejer, J. A. & Lee, K. F. 1967 J. Plasma Phys. 1, 387406.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. New York: Academic Press.Google Scholar
Grad, H. 1967 The guiding center plasma. Proceedings of Symposia in Applied Mathematics, vol. XVIII.CrossRefGoogle Scholar
Kadomtsev, B. B. 1960 Plasma dynamics in a strong magnetic field, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol. IV. Pergamon Press.Google Scholar
Landau, L. 1946 J. Phys. USSR. 10, 25.Google Scholar
Liu, C. S. 1968 Low frequency electrostatic instabilities in the magnetosphere. Lawrence Rad. Lab. UCRL—18121.Google Scholar
McKenzie, J. F. 1967 Proc. Phys. Soc. 91, 532.CrossRefGoogle Scholar
Montgomery, D. C. & Tidman, D. A. 1964 Plasma Kinetic Theory. McGraw-Hill.Google Scholar
Northrop, T. G. 1963 The Adiabatic Motion of Charged Particles. Interscience.CrossRefGoogle Scholar
Okoye, S. E. & Hewish, A. 1967 Mon. Nat. R. Astro. Soc. 137, 287.CrossRefGoogle Scholar
Parker, E. N. 1958 Phys. Rev. 109.Google Scholar
Persson, H. 1966 Phys. Fluids 9, 1090.CrossRefGoogle Scholar
Rosenbluth, M. N. 1956 Stability of the pinch. Los Alamos Sci. Lab. LA-2030.Google Scholar
Scarf, F. L., Wolfe, J. H. & Silva, R. W. 1967 J. Geophys. Res. 70, 993.CrossRefGoogle Scholar
Shafranov, V. D. 1967 Electromagnetic waves in a plasma. In Review of Plasma Physics, pp. 9095. New York: Consultants Bureau.Google Scholar
Spitzer, L. Jr, 1965 Physics of fully ionized gases. Interscience, pp. 315..Google Scholar
Stéfant, R. J. 1968 Collisionless damping of shear Alfvén waves due to the finite cyclotron radius effect. Preprint.Google Scholar
Stepanov, K. N. 1958 Soviet Phys.-JETP, vol. XXXIV, p. 892.Google Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar