Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T10:46:52.023Z Has data issue: false hasContentIssue false

Improved modellisation of laser–particle interaction in particle-in-cell simulations

Published online by Cambridge University Press:  12 April 2023

Pierre-Louis Bourgeois*
Affiliation:
CEA, DAM, DIF, 91297 Arpajon, France LCPMR – UMR 7614 – CNRS/Sorbonne-Université, 75252 Paris CEDEX 05, France
Xavier Davoine
Affiliation:
CEA, DAM, DIF, 91297 Arpajon, France Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France
*
Email address for correspondence: pierre-louis.bourgeois@sorbonne-universite.fr

Abstract

A new method named B-TIS (Bourgeois & Davoine, J. Comput. Phys., vol. 413, 2020, 109426) has recently been proposed for suppressing the influence of numerical Cherenkov radiation that appears in particle-in-cell (PIC) simulation of laser wakefield acceleration (LWFA). However, while this method provides good results when applied to the already accelerated electrons, we show here that it cannot model correctly most of the plasma electron bulk interacting with the laser field. We thus investigate in this paper the origins of this limitation and propose an improved method for which this limitation is removed. This new method, named B-TIS3, can now be applied to a much broader variety of problems and improve the performance in comparison with the standard PIC algorithm. We show that, for an electron interacting directly with a laser pulse, this new technique offers greater accuracy in terms of momentum and motion than the conventional scheme used in many PIC codes. These improvements translate into more faithful energy spectrum and electric charge for the accelerated beam in simulations of vacuum laser acceleration (VLA) or LWFA involving direct laser acceleration (DLA) at low plasma density. This new method, easy to implement and not computationally demanding, should then prove useful to study in depth and help develop novel VLA, DLA and LWFA techniques.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boris, J.P. 1970 Relativistic plasma simulation-optimization of a hybrid code. In Proceeding of Fourth Conference on Numerical Simulations of Plasmas, pp. 3–67. Naval Res. Lab.Google Scholar
Bourgeois, P.-L. & Davoine, X. 2020 New mitigation approach to numerical cherenkov radiation in PIC simulations of wakefield accelerators. J. Comput. Phys. 413, 109426.CrossRefGoogle Scholar
Bulanov, S., Naumova, N., Pegoraro, F. & Sakai, J. 1998 Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E 58, R5257R5260.CrossRefGoogle Scholar
Carbajo, S., Nanni, E.A., Wong, L.J., Moriena, G., Keathley, P.D., Laurent, G., Miller, R.J.D. & Kärtner, F.X. 2016 Direct longitudinal laser acceleration of electrons in free space. Phys. Rev. Accel. Beams 19, 021303.CrossRefGoogle Scholar
Cline, D., Shao, L., Ding, X., Ho, Y., Kong, Q. & Wang, P. 2013 First observation of acceleration of electrons by a laser in a vacuum. J. Mod. Phys. 4 (1), 16.CrossRefGoogle Scholar
Ekerfelt, H., Hansson, M., Gallardo González, I., Davoine, X. & Lundh, O. 2017 A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration. Sci. Rep. 7 (12229), 20452322.CrossRefGoogle Scholar
Esarey, E., Sprangle, P. & Krall, J. 1995 Laser acceleration of electrons in vacuum. Phys. Rev. E 52, 54435453.CrossRefGoogle ScholarPubMed
Godfrey, B.B. 1974 Numerical cherenkov instabilities in electromagnetic particle codes. J. Comput. Phys. 15 (4), 504521.Google Scholar
Godfrey, B.B. & Vay, J.-L. 2014 Suppressing the numerical cherenkov instability in FDTD PIC codes. J. Comput. Phys. 267, 16.CrossRefGoogle Scholar
Lefebvre, E., Cochet, N., Fritzler, S., Malka, V., Aléonard, M.-M., Chemin, J.-F, Darbon, S., Disdier, L., Faure, J., Fedotoff, A., et al. 2003 Electron and photon production from relativistic laser–plasma interactions. Nucl. Fusion 43 (7), 629633.CrossRefGoogle Scholar
Lehe, R., Kirchen, M., Godfrey, B.B., Maier, A.R. & Vay, J.-L. 2016 Elimination of numerical cherenkov instability in flowing-plasma particle-in-cell simulations by using galilean coordinates. Phys. Rev. E 94, 053305.Google ScholarPubMed
Lehe, R., Lifschitz, A., Thaury, C., Malka, V. & Davoine, X. 2013 Numerical growth of emittance in simulations of laser-wakefield acceleration. Phys. Rev. ST Accel. Beams 16, 021301.CrossRefGoogle Scholar
Lehe, R., Thaury, C., Guillaume, E., Lifschitz, A. & Malka, V. 2014 Laser-plasma lens for laser-wakefield accelerators. Phys. Rev. ST Accel. Beams 17, 121301.CrossRefGoogle Scholar
Li, F., Miller, K.G., Xu, X., Tsung, F.S., Decyk, V.K., An, W., Fonseca, R.A. & Mori, W.B. 2021 A new field solver for modeling of relativistic particle-laser interactions using the particle-in-cell algorithm. Comput. Phys. Commun. 258, 107580.CrossRefGoogle Scholar
Li, F., Yu, P., Xu, X., Fiuza, F., Decyk, V.K., Dalichaouch, T., Davidson, A., Tableman, A., An, W., Tsung, F.S., et al. 2017 Controlling the numerical cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction. Comput. Phys. Commun. 214, 617.CrossRefGoogle Scholar
Marceau, V., Hogan-Lamarre, P., Brabec, T., Piché, M. & Varin, C. 2015 Tunable high-repetition-rate femtosecond few-hundred keV electron source. J. Phys. B 48 (4), 045601.CrossRefGoogle Scholar
Mora, P. & Antonsen, T.M. Jr. 1997 Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas. Phys. Plasmas 4 (1), 217229.CrossRefGoogle Scholar
Pukhov, A. 2020 X-dispersionless maxwell solver for plasma-based particle acceleration. J. Comput. Phys. 418, 109622.CrossRefGoogle Scholar
Pukhov, A., Sheng, Z.-M. & ter Vehn, J.M. 1999 Particle acceleration in relativistic laser channels. Phys. Plasmas 6 (7), 28472854.CrossRefGoogle Scholar
Quesnel, B. & Mora, P. 1998 Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum. Phys. Rev. E 58, 37193732.CrossRefGoogle Scholar
Shaw, J.L., Lemos, N., Amorim, L.D., Vafaei-Najafabadi, N., Marsh, K.A., Tsung, F.S., Mori, W.B. & Joshi, C. 2017 Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection. Phys. Rev. Lett. 118, 064801.CrossRefGoogle Scholar
Shaw, J.L., Tsung, F.S., Vafaei-Najafabadi, N, Marsh, K.A., Lemos, N., Mori, W.B. & Joshi, C. 2014 Role of direct laser acceleration in energy gained by electrons in a laser wakefield accelerator with ionization injection. Plasma Phys. Control. Fusion 56 (8), 084006.Google Scholar
Suk, H., Barov, N., Rosenzweig, J.B. & Esarey, E. 2001 Plasma electron trapping and acceleration in a plasma wake field using a density transition. Phys. Rev. Lett. 86, 10111014.CrossRefGoogle Scholar
Varin, C., Payeur, S., Marceau, V., Fourmaux, S., April, A., Schmidt, B., Fortin, P.-L., Thiré, N., Brabec, T., Légaré, F., et al. 2013 Direct electron acceleration with radially polarized laser beams. Appl. Sci. 3, 7093.CrossRefGoogle Scholar
Vay, J.-L. 2008 Simulation of beams or plasmas crossing at relativistic velocity. Phys. Plasmas 15 (5), 056701.CrossRefGoogle Scholar
Xu, X., Yu, P., Martins, S.F., Tsung, F.S., Decyk, V.K., Vieira, J., Fonseca, R.A., Lu, W., Silva, L.O. & Mori, W.B. 2013 Numerical instability due to relativistic plasma drift in EM-PIC simulations. Comput. Phys. Commun. 184 (11), 25032514.CrossRefGoogle Scholar
Yee, K. 1966 Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 14 (3), 302307.Google Scholar
Yu, P., Xu, X., Decyk, V.K., Fiuza, F., Vieira, J., Tsung, F.S., Fonseca, R.A., Lu, W., Silva, L.O. & Mori, W.B. 2015 Elimination of the numerical cerenkov instability for spectral EM-PIC codes. Comput. Phys. Commun. 192, 3247.CrossRefGoogle Scholar
Yu, W., Yu, M.Y., Ma, J.X., Sheng, Z.M., Zhang, J., Daido, H., Liu, S.B., Xu, Z.Z. & Li, R.X. 2000 Ponderomotive acceleration of electrons at the focus of high intensity lasers. Phys. Rev. E 61, R2220R2223.Google Scholar
Zaïm, N., Thévenet, M., Lifschitz, A. & Faure, J. 2017 Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam. Phys. Rev. Lett. 119, 094801.CrossRefGoogle ScholarPubMed
Zhang, X., Khudik, V.N. & Shvets, G. 2015 Synergistic laser-wakefield and direct-laser acceleration in the plasma-bubble regime. Phys. Rev. Lett. 114, 184801.CrossRefGoogle ScholarPubMed