Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T05:15:20.706Z Has data issue: false hasContentIssue false

Ion cyclotron electromagnetic wave structure in Elmo bumpy torus

Published online by Cambridge University Press:  13 March 2009

M. Cotsaftis
Affiliation:
JAYCOR, San Diego, CA 92138
N. T. Gladd
Affiliation:
JAYCOR, San Diego, CA 92138
N. A. Krall
Affiliation:
JAYCOR, San Diego, CA 92138

Abstract

The problem of ion cyclotron wave structure in EBT has been analyzed using the smallness of the inverse aspect ratio ε = a/R0 and of the inverse cavity number ε' = 1/N. The procedure is to expand in these two parameters, reducing the complete toroidal problem to a system of equations to be solved in sequence. To second order in ε and ε', this system contains two ordinary differential equations of second order and one partial differential equation with periodic coefficients in a magnetically adapted system of co-ordinates. The smallness of the mean bumpiness parameter εB reduces the problem to a single second-order differential equation which, for a parabolic density profile, is a Whittaker equation. The EM wave structure corresponds to a simple mode with only a few wavelengths across the plasma radius, permitting multi-harmonic ion cyclotron heating with interesting efficiency, as observed in experiments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramovitz, M. & Stegun, I. 1964 Handbook of Mathematical Functions. Dover.Google Scholar
Adam, J. 1983 Proceedings of 5th Topical Conference on Wave Heating in Toroidal Systems, Wisconsin.Google Scholar
Baity, F. W., Eldridge, O. C., Owens, T. L., Mullen, J. H. & Henderson, A. L. 1981 Proceedings of Workshop on Ambipolar Potential Formation and Control in Bumpy Tori and Mirrors, p. 441.Google Scholar
Bogoliubov, N. N. & Mitropolskii, Y. A. 1961 Asymptotic Methods in the Theory of Nonlinear Oscillations. Hindustan Publishing Corporation.Google Scholar
Budden, K. G. 1957 Radio-Waves in the Ionosphere. Cambridge University Press.Google Scholar
Cotsaftis, M. 1982 Report EUR-CEAFC-1141.Google Scholar
Cotsaftis, M. 1983 a Report EUR-CEAFC-1192.Google Scholar
Cotsaitis, M. 1983 b JAYCOR Report J530−83−110.Google Scholar
Davis, W. A. 1983 Bull. Am. Phys. Soc. 28, 1225.Google Scholar
Dupree, J. H. 1967 Phys. Fluids, 10, 1049.CrossRefGoogle Scholar
Galeev, A. A., Karpman, V. I. & Sagdeev, R. Z. 1966 Nucl. Fusion, 5, 20.CrossRefGoogle Scholar
Itoh, K., Itoh, S. & Fukuyama, A. 1983 MIFT Report 76.Google Scholar
Landau, L. & Lifschitz, S. 1960 Mechanics, vol. 1. Pergamon.Google Scholar
Miller, R. L., Dandl, R. A. & Guest, G. E. 1983 Phys. Rev. Lett. 51, 2036.CrossRefGoogle Scholar
Minorsky, N. 1962 Nonlinear Oscillations. Van Nostrand.Google Scholar
Mitropolskii, Y. A. 1966 Problèmes de la Theorie Asymptotique de Oscillations Non-stationnaires. Gauthier-Villars.Google Scholar
Owens, T. L., Mullen, J. H., Baity, F. W., Davis, W. A., Eldridge, O. C. & Hillis, D. L. 1983 Nucl. Fusion, 23, 49.CrossRefGoogle Scholar
Perkins, F. W. 1977 Nucl. Fusion, 17, 1197.CrossRefGoogle Scholar
Sperling, J. L., Krall, N. A., Cotsaftis, M. & Gladd, N. T. 1983 Bull. Am. Phys. Soc. 28, 1227.Google Scholar
Suckewer, S. et al. 1981 Nucl. Fusion, 21, 981.CrossRefGoogle Scholar
Valiron, G. 1932 Analyse Fonctionnelle. Gauthier-Villars.Google Scholar
Weinstock, J. 1968 Phys. Fluids, 11, 1977.CrossRefGoogle Scholar