Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T23:07:42.640Z Has data issue: false hasContentIssue false

Kinetic equations for a non-uniform plasma in strong fields and resulting particle transport

Published online by Cambridge University Press:  13 March 2009

Alf H. Øien
Affiliation:
Department of Applied Mathematics, University of Bergen, Allégt. 53/55, 5000 Bergen, Norway

Abstract

From the BBGKY equations for a multi-component plasma a derivation of generalized kinetic equations valid for non-uniform, neutral as well as non-neutral plasmas in strong electric and magnetic fields is made. Explicit effects of particle gyration and non-uniformities on the collisional scale are included in the collision terms. For each particle species the collision terms describing interaction between the same or other particle species consist of two parts. The first part is a generalization of the corresponding classical term, to which it reduces when fields and non-uniformities are negligible on the collisional scales. The second part is non-vanishing when non-uniformities are taken account of on the collisional scale. For the case of a neutral plasma, particle transport transverse to the magnetic field and along the density gradient is found. The result shows an increase of particle transport as compared with the classical formula when the Larmor radii are smaller than the Debye length. The underlying mechanism for this increase is pointed out.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bogoliubov, N. N. 1962 Studies in Statistical Mechanics, vol. I, part A (ed. De Boer, J. & Uhlenbeck, G. E.). North-Holland.Google Scholar
Braginskii, S. I. 1965 Reviews of Plasma Physics, vol. 1 (ed. Leontovich, M. A.), p. 205. Consultants Bureau.Google Scholar
Driscoll, C. F., Fine, K. S. & Malmberg, J. H. 1985 Bull. Am. Phys Soc. 30, 1552.Google Scholar
Ghendrih, P. & Misguich, J. H. 1986 DRFC-STGI EUR-CEA-FC-1281 (Association Euratom-CEA, Département de Recherches sur la Fusion Controlée, Cadarache, 13 108 Saint-Paul-lez-Durance Cedex, France).Google Scholar
Hazeltine, R. D. 1976 Advances in Plasma Physics, vol. 6 (ed. Simon, A. & Thompson, W. B.), p. 273. Wiley.Google Scholar
Landau, L. 1936 Phys. Z. Sowjetunion, 10, 154.Google Scholar
Misguich, J. H., Balescu, R., Pécseli, H. L., Mikkelsen, T. & Larsen, S. E. 1987 Plasma Phys. Contr. Fusion, 29, 825.CrossRefGoogle Scholar
Montgomery, D., Turner, L. & Joyce, G. 1974 Phys. Fluids, 17, 954.CrossRefGoogle Scholar
Oien, A. H. 1979 J. Plasma Phys. 21, 401.CrossRefGoogle Scholar
Oien, A. H. 1987 J. Plasma Phys. 38, 351.CrossRefGoogle Scholar
Oien, A. H. 1989 Physica Scripta, 40, 90.CrossRefGoogle Scholar
Oien, A. H. & Naze Tjøtta, J. 1971 Phys. Fluids, 14, 2373.CrossRefGoogle Scholar
O'Neil, T. M. 1985 Phys. Rev. Lett. 55, 943.CrossRefGoogle Scholar
O'Neil, T. M. & Driscoll, C. F. 1979 Phys. Fluids, 22, 266.CrossRefGoogle Scholar
Rostoker, N. 1960 Phys. Fluids, 3, 922.CrossRefGoogle Scholar
Schram, P. P. J. M. 1969 Physica, 45, 165.CrossRefGoogle Scholar
Su, C. H. 1964 J. Math. Phys. 5, 1273.CrossRefGoogle Scholar