Published online by Cambridge University Press: 15 September 2014
Ripples in magnetic or electrostatic confinement fields give rise to trapping separatrices, and conventional neoclassical transport theory describes the collisional trapping/detrapping of particles with fractured distribution function. Our experiments and novel theory have now characterized a new kind of neoclassical transport processes arising from chaotic (nominally collisionless) separatrix crossings, which occur due to E × B plasma rotation along θ−ruffled or wave-perturbed separatrices. This chaotic neoclassical transport becomes dominant at low collisionality when the collisional spreading of particle energy during the dynamical period is less than the separatrix energy ruffle.