Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T11:16:18.758Z Has data issue: false hasContentIssue false

Nonlinear coupling of a superluminal electromagnetic wave to a relativistic electron beam

Published online by Cambridge University Press:  13 March 2009

N. Bisai
Affiliation:
Institute for plasma Research, Bhat, Gandhinagar 382424, India
A. Sen
Affiliation:
Institute for plasma Research, Bhat, Gandhinagar 382424, India
K. K. Jain
Affiliation:
Institute for plasma Research, Bhat, Gandhinagar 382424, India

Abstract

The nonlinear propagation of a superluminal, linearly polarized electromagnetic wave in the presence of a relativistic cold electron beam is investigated. At large amplitudes the wave couples to the electron-beam plasma mode owing to two important nonlinear effects, namely the relativistic variation of the electron mass and the excitation of longitudinal space charge fields by strong v × B forces. The nonlinear propagation equations for the coupled electromagnetic and longitudinal waves are derived within the context of a relativistic cold-fluid model. Nonlinear travelling-wave solutions are sought to describe the saturated state of the coupled system. Using Hamiltonian techniques, a wide variety of solutions are obtained and their characteristics discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhiezer, A. I. & Polovin, R. V. 1956 Soviet Phys. JETP 3, 696.Google Scholar
Bekefi, G. 1991 A Variety of Plasmas (ed. Sen, A. & Kaw, P. K.). Indian Academy of Sciences, Bangalore.Google Scholar
Berezhiani, V. I., Skarka, V. & Mahajan, S. 1993 Phys. Rev. E 48, R3252.Google Scholar
Davidson, R. C., Chan, H. W., Chen, C. & Lund, S. 1992 Nonlinear and Relativistic Effects in Plasnias (ed. Stefan, V.), p. 425, AIP, New York.Google Scholar
DeCoster, A. 1978 Phys. Rep. 47, 285.Google Scholar
Kaw, P. K., Sen, A. & Valeo, E. J. 1983 Physica 9 D, 96.Google Scholar
Kaw, P. K., Sen, A. & Valeo, E. J. 1985 Phys. Lett. 110 A, 35.Google Scholar
Kaw, P. K., Sen, A. & Katsouleas, T. 1992 Phys. Rev. Lett. 68, 3172.CrossRefGoogle Scholar
Kozlov, V. A., Litvak, A. G. & Suvorov, E. V. 1979 Soviet Phys. JETP 49, 75.Google Scholar
Rao, N. N. & Varma, R. K. 1982 J. Plasma Phys. 27, 95.CrossRefGoogle Scholar
Rao, N. N., Varma, R. K., Shukla, P. K. & Ming, M. Y. 1983 Phys. Fluids 26, 2488.Google Scholar
Sen, A. & Johnston, G. L. 1993 Phys. Rev. Lett. 70, 780.CrossRefGoogle Scholar
Sprangle, P., Esarey, E. & Ting, A. 1990 Phys. Rev. Lett. 64, 2011.Google Scholar
Varma, R. K. & Rao, N. N. 1980 Phys. Lett. 79 A,311.Google Scholar