Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-14T06:43:52.718Z Has data issue: false hasContentIssue false

Non-Maxwellian rate coefficients for electron and ion collisions in Rydberg plasmas: implications for excitation and ionization

Published online by Cambridge University Press:  29 May 2020

Daniel Vrinceanu
Affiliation:
Department of Physics, Texas Southern University, Houston, TX 77004, USA
Roberto Onofrio*
Affiliation:
Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, Via Marzolo 8, 35131Padova, Italy Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755, USA
H. R. Sadeghpour
Affiliation:
ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
*
Email address for correspondence: onofrior@gmail.com

Abstract

Scattering phenomena between charged particles and highly excited Rydberg atoms are of critical importance in many processes in plasma physics and astrophysics. While a Maxwell–Boltzmann (MB) energy distribution for the charged particles is often assumed for calculations of collisional rate coefficients, in this contribution we relax this assumption and use two different energy distributions, a bimodal MB distribution and a $\unicode[STIX]{x1D705}$-distribution. Both variants share a high-energy tails occurring with higher probability than the corresponding MB distribution. The high-energy tail may significantly affect rate coefficients for various processes. We focus the analysis to specific situations by showing the dependence of the rate coefficients on the principal quantum number of hydrogen atoms in $n$-changing collisions with electrons in the excitation and ionization channels and in a temperature range relevant to the divertor region of a tokamak device. We finally discuss the implications for diagnostics of laboratory plasmas.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul, R. F. & Mace, R. L. 2014 A method to generate kappa distributed random deviates for particle-in-cell simulations. Comput. Phys. Commun. 185, 2382.CrossRefGoogle Scholar
Abramowitz, M. & Stegun, C. A.(Eds) 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, pp. 946949. Dover.Google Scholar
Albanese, R. et al. 2017 DTT: a divertor tokamak test facility for the study of the power exhaust issues in view of DEMO. Nucl. Fusion 57, 016010.CrossRefGoogle Scholar
Anderson, H., Ballance, C. P., Badnell, N. R. & Summers, H. P. 2002 An R-matrix with pseudostates approach to the electron-impact excitation of HI for diagnostic applications in fusion plasmas. J. Phys. B 35, 1613.CrossRefGoogle Scholar
Bhatnagar, V. P., Jacquinot, J., Start, D. F. H. & Tubbing, B. J. D. 1993 High-concentration minority ion-cyclotron resonance heating in JET. Nucl. Fusion 33, 83.CrossRefGoogle Scholar
Chluba, J., Vasil, G. M. & Dursi, L. J. 2010 Recombinations to the Rydberg states of hydrogen and their effect during the cosmological recombination epoch. Mon. Not. R. Astron. Soc. 407, 599.CrossRefGoogle Scholar
Cui, X., Foster, A. R., Yuasa, T. & Smith, R. K. 2019 X-ray spectra from plasmas with high-energy electrons: $\unicode[STIX]{x1D705}$-distributions and $\text{e}^{-}{-}\text{e}^{-}$ bremsstrahlung. Astrophys. J. 887 (2), 182.CrossRefGoogle Scholar
Draine, B. T. & Kreisch, C. D. 2018 Electron energy distributions in H II regions and planetary nebulae: kappa-distributions do not apply. Astrophys. J. 862, 30.CrossRefGoogle Scholar
Hahn, M. & Savin, D. W. 2015 A simple method for modeling collision processes in plasmas with a kappa energy distribution. Astrophys. J. 809, 178.CrossRefGoogle Scholar
Hollmann, E. M., Brezinsek, S., Brooks, N. H., Groth, M., McLean, A. G., Pigarov, Y. & Rudakov, D. L. 2006 Spectroscopic measurement of atomic and molecular Deuterium fluxes in the DIII-D plasma edge. Plasma Phys. Control. Fusion 48, 1165.CrossRefGoogle Scholar
Janev, R. K., Langer, W. D., Evans, K. Jr. & Post, D. E. Jr. 1987 Elementary Processes in Hydrogen–Helium Plasmas. Springer.CrossRefGoogle Scholar
Janev, R. K., Reiter, D. & Samm, U. 2003 Collision Processes in Low-Temperature Hydrogen Plasma. Forschungszentrum.Google Scholar
Klein, K. G., Alterman, B. L., Stevens, M. L., Vech, D. & Kasper, J. C. 2018 Majority of solar wind intervals support ion-driven instabilities. Phys. Rev. Lett. 120, 205102.CrossRefGoogle ScholarPubMed
Klein, K. G. & Howes, G. G. 2015 Predicted impacts of proton temperature anisotropy on solar wind turbulence. Phys. Plasmas 22, 032903.CrossRefGoogle Scholar
Livadiotis, G. 2018a Thermodynamical origin of kappa distributions. Europhys. Lett. 122, 50001.CrossRefGoogle Scholar
Livadiotis, G. 2018b Statistical origin and properties of kappa distributions. J. Phys.: Conf. Ser. 900, 012014.Google Scholar
Livadiotis, G. & McComas, D. J. 2011 Invariant kappa distribution in space plasmas out of equilibrium. Astrophys. J. 741, 88.CrossRefGoogle Scholar
Mansbach, P. & Keck, J. 1969 Monte Carlo trajectory calculations of atomic excitation and ionization by thermal electrons. Phys. Rev. 181, 275.CrossRefGoogle Scholar
Mashonkina, L. J. 1996 Accurate collisional cross sections: important input data in non-LTE calculations. In ASP Conf. Ser. 108, Model Atmospheres and Spectrum Synthesis (ed. Adelman, S. J., Kupka, F. & Weiss, W. W.), p. 140. ASP.Google Scholar
Nagesha, K. & MacAdam, K. B. 2003 Electron impact ionization of sodium Rydberg atoms below 2 eV. Phys. Rev. Lett. 91, 113202.CrossRefGoogle ScholarPubMed
Nicholls, D. C., Dopita, M. A. & Sutherland, R. S. 2012 Resolving the electron temperature discrepancies in HII regions and planetary nebulae: $\unicode[STIX]{x1D705}$-distributed electrons. Astrophys. J. 752, 148.CrossRefGoogle Scholar
Nicholls, D. C., Dopita, M. A., Sutherland, R. S., Kewley, L. J. & Palay, E. 2013 Measuring nebular temperatures: the effect of new collision strengths with equilibrium and kappa-distributed electron energies. Astrophys. J. Suppl. Ser. 207, 21.CrossRefGoogle Scholar
Onofrio, R. 2018 Concepts for a Deuterium–Deuterium fusion reactor. J. Expl Theor. Phys. 127, 883.CrossRefGoogle Scholar
Pohl, T., Vrinceanu, D. & Sadeghpour, H. R. 2008 Rydberg atom formation in ultracold plasmas: small energy transfer with large consequences. Phys. Rev. Lett. 100, 223201.CrossRefGoogle ScholarPubMed
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1992 Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edn., pp. 219223. Cambridge University Press.Google Scholar
Przybilla, N. & Butler, K. 2004 Non-LTE line formation for hydrogen revisited. Astrophys. J. 609, 1181.CrossRefGoogle Scholar
Reiter, D. 1992 Progress in two-dimensional plasma edge modeling. J. Nucl. Mater. 196, 80.CrossRefGoogle Scholar
Rolfes, R. G., Gray, L. G., Makarov, O. P. & MacADAM, K. B. 1993 Electron-collision-induced dipole transitions in Na Rydberg atoms – 30s–30p and 30s–29p absolute cross-sections. J. Phys. B: Atom. Molec. Phys. 26, 2191.CrossRefGoogle Scholar
Rost, J. M. & Pattard, T. 1997 Analytical parameterization for the shape of atomic ionization cross sections. Phys. Rev. A 55, R5.CrossRefGoogle Scholar
Storey, P. J. & Sochi, T. 2014 The continuum emission spectrum of Hf 2-2 near the Balmer limit and the ORL versus CEL abundance and temperature discrepancy. Mon. Not. R. Astron. Soc. 440, 2581.CrossRefGoogle Scholar
Storey, P. J. & Sochi, T. 2015 Emission and recombination for hydrogen with $\unicode[STIX]{x1D705}$-distributed electron energies. Mon. Not. R. Astron. Soc. 446, 1864.CrossRefGoogle Scholar
Takamura, S., Ohno, N., Nishijima, D. & Uesugi, Y. 2002 Generation and characteristics of a detached recombining plasma and its dynamic behaviour – a bridge between fusion plasmas and low-temperature ionized gases. Plasma Sources Sci. Technol. 11, A42.CrossRefGoogle Scholar
Turaginov, S., Brooks, N. H., Buzhinskij, O., Parker, C., Pulinetz, T., Skvortzova, A. & Trofimenko, V. 1994 High-resolution spectroscopy of the D III-D divertor region. Rev. Sci. Instrum. 66, 603.Google Scholar
Vasyliunas, V. M. 1968 A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839.CrossRefGoogle Scholar
Vrinceanu, D. 2005 Electron impact ionization of Rydberg atoms. Phys. Rev. A 72, 022722.CrossRefGoogle Scholar
Vrinceanu, D., Onofrio, R. & Sadeghpour, H. R. 2014 Comprehensive rate coefficients for electron-collision-induced transitions in hydrogen. Astrophys. J. 780, 2.CrossRefGoogle Scholar
Wannier, G. H. 1953 The threshold law for single ionization of atoms or ions by electrons. Phys. Rev. 90, 817.CrossRefGoogle Scholar
Wigner, E. P. & Eisenbud, L. 1947 Higher angular momenta and long range interaction in resonance reactions. Phys. Rev. 72 (1), 2941.CrossRefGoogle Scholar
Winter, J. 2000 Dust: a new challenge in nuclear fusion research? Phys. Plasmas 7, 3862.CrossRefGoogle Scholar
Yoon, P. H. 2017 Kinetic instabilities in the solar wind driven by temperature anisotropies. Rev. Mod. Plasma Phys. 1, 4.CrossRefGoogle Scholar