Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T06:57:34.521Z Has data issue: false hasContentIssue false

A numerical study of Lévy random walks: Mean square displacement and power-law propagators

Published online by Cambridge University Press:  16 October 2014

E. M. Trotta
Affiliation:
Department of Physics, University of Calabria, Ponte P. Bucci, Cubo 31C, I-87036 Rende, Italy
G. Zimbardo*
Affiliation:
Department of Physics, University of Calabria, Ponte P. Bucci, Cubo 31C, I-87036 Rende, Italy
*
Email address for correspondence: gaetano.zimbardo@fis.unical.it

Abstract

Non-diffusive transport, for which the particle mean free path grows nonlinearly in time, is envisaged for many space and laboratory plasmas. In particular, superdiffusion, i.e. 〈Δx2〉 ∝ tα with α > 1, can be described in terms of a Lévy random walk, in which case the probability of free-path lengths has power-law tails. Here, we develop a direct numerical simulation to reproduce the Lévy random walk, as distinct from the Lévy flights. This implies that in the free-path probability distribution Ψ(x, t) there is a space-time coupling, that is, the free-path length is proportional to the free-path duration. A power-law probability distribution for the free-path duration is assumed, so that the numerical model depends on the power-law slope μ and on the scale distance x0. The numerical model is able to reproduce the expected mean square deviation, which grows in a superdiffusive way, and the expected propagator P(x, t), which exhibits power-law tails, too. The difference in the power-law slope between the Lévy flights propagator and the Lévy walks propagator is also estimated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blumen, A., Klafter, J. and Zumofen, G. 1990 A stochastic approach to enhanced diffusion: Lévy walks. Europhys. Lett. 13, 223229.CrossRefGoogle Scholar
Bouchaud, J. P. and Georges, A. 1990 Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 195, 127293.CrossRefGoogle Scholar
Bovet, A., Gamarino, M., Furno, I., Ricci, P., Fasoli, A., Gustafson, K., Newman, D. and Sanchez, R. 2014 Transport equation describing fractional Lévy motion of suprathermal ions in TORPEX. Nucl. Fusion, in press.CrossRefGoogle Scholar
Carreras, B. A., Lynch, V. E. and Zaslavsky, G. M. 2001 Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys. Plasmas 8, 5096.CrossRefGoogle Scholar
Consolini, G., Kretzschmar, M., Lui, A. T. Y., Zimbardo, G. and Macek, W. M. 2005 On the magnetic field fluctuations during magnetospheric tail current disruption: a statistical approach. J. Geophys. Res. 110, A07202, doi: 10.1029/2004JA010947.Google Scholar
del-Castillo-Negrete, D., Carreras, B. A. and Lynch, V. E. 2004 Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 38543864.CrossRefGoogle Scholar
Effenberger, F. 2012 Anisotropic diffusion of energetic particles in galactic and heliospheric magnetic fields. PhD thesis, Ruhr-Universitaet Bochum.CrossRefGoogle Scholar
Geisel, T., Nierwetberg, J. and Zacherl, A. 1985 Accelerated diffusion in Josephson junctions and related chaotic systems. Phys. Rev. Lett. 54 (7), 616619.CrossRefGoogle ScholarPubMed
Ghaemi, M., Zabihinpour, Z. and Asgari, Y. 2009 Computer simulation study of the Levy flight process. Physica A 388, 15091514.CrossRefGoogle Scholar
Greco, A., Taktakishvili, A. L., Zimbardo, G., Veltri, P. and Zelenyi, L. M. 2002 Ion dynamics in the near-Earth magnetotail: magnetic turbulence versus normal component of the average magnetic field. J. Geophys. Res. 107, SMP 1–1SMP 1–16.Google Scholar
Gustafson, K., Ricci, P., Furno, I. and Fasoli, A. 2012 Nondiffusive suprathermal ion transport in simple magnetized toroidal plasmas. Phys. Rev. Lett. 108, 035006.CrossRefGoogle ScholarPubMed
Klafter, J., Blumen, A. and Shlesinger, M. F. 1987 Stochastic pathway to anomalous diffusion. Phys. Rev. A 35, 30813085.CrossRefGoogle ScholarPubMed
Laitinen, T., Dalla, S. and Marsh, M. S. 2013 Energetic particle cross-field propagation early in a solar event. Astrophys. J. Lett. 773, L29.CrossRefGoogle Scholar
Lin, R. P. 1974 Non-relativistic solar electrons. Space Sci. Rev. 16, 189256.CrossRefGoogle Scholar
Metzler, R. and Klafter, J. 2000 The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 177.CrossRefGoogle Scholar
Metzler, R. and Klafter, J. 2004 Topical review: the restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37, R161R208.CrossRefGoogle Scholar
Mier, J. A., Sánchez, R., Garcia, L., Carreras, B. A. and Newman, D. E. 2008 Characterization of nondiffusive transport in plasma turbulence via a novel Lagrangian method. Phys Rev. Lett. 101, 165001–1165001–4.CrossRefGoogle Scholar
Ostrowski, M. and Schlickeiser, R. 1996 Cosmic-ray diffusive acceleration at shock waves with finite upstream and downstream escape boundaries. Solar Phys. 169, 381.CrossRefGoogle Scholar
Perri, S. and Balogh, A. 2010a Stationarity in solar wind flows. Astrophys. J. 714, 937943.CrossRefGoogle Scholar
Perri, S. and Balogh, A. 2010b Characterization of transition in solar wind parameters. Astrophys. J. 710, 12861294.CrossRefGoogle Scholar
Perri, S. and Zimbardo, G. 2007 Evidence of superdiffusive transport of electrons accelerated at interplanetary shocks. Astrophys. J. Lett. 671, 177180.CrossRefGoogle Scholar
Perri, S. and Zimbardo, G. 2008 Superdiffusive transport of electrons accelerated at corotating interaction regions. J. Geophys. Res. 113, A03107, doi: 10.1029/2007JA012695.Google Scholar
Perri, S. and Zimbardo, G. 2009a Ion and electron superdiffusive transport in the interplanetary space. Adv. Space Res. 44, 465470.CrossRefGoogle Scholar
Perri, S. and Zimbardo, G. 2009b Ion superdiffusion at the solar wind termination shock. Astrophys. J. Lett. 693, L118L121.CrossRefGoogle Scholar
Perri, S. and Zimbardo, G. 2012a Magnetic variances and pitch-angle scattering times upstream of interplanetary shocks. Astrophys. J. 754, 8.CrossRefGoogle Scholar
Perri, S. and Zimbardo, G. 2012b Superdiffusive shock acceleration. Astrophys. J. 750, 87.CrossRefGoogle Scholar
Perrone, D., Dandy, R. O., Furno, I., et al. 2013 Nonclassical transport and particle-field coupling: from laboratory plasma to the solar wind. Space Sci. Rev. 178, 233270, doi: 10.1007/s11214-013-9966-9.CrossRefGoogle Scholar
Pommois, P., Zimbardo, G. and Veltri, P. 2007 Anomalous, non-Gaussian transport of charged particles in anisotropic magnetic turbulence. Phys. Plasmas 14, 012311–1012311–11.CrossRefGoogle Scholar
Shalchi, A. and Kourakis, I. 2007 A new theory for perpendicular transport of cosmic rays. Astron. Astrophys. 470, 405409.CrossRefGoogle Scholar
Shlesinger, M. F., West, B. J. and Klafter, J. 1987 Levy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, 1100.CrossRefGoogle ScholarPubMed
Sugiyama, T. and Shiota, D. 2011 Sign for super-diffusive transport of energetic ions associated with a coronal-mass-ejection-driven interplanetary shock. Astrophys. J. 731, L34L37.CrossRefGoogle Scholar
Tautz, R. C. 2010 Simulation results on the influence of magneto-hydrodynamic waves on cosmic ray particles. Plasma Phys. Control Fusion 52, 045 016.CrossRefGoogle Scholar
Trotta, E. M. and Zimbardo, G. 2011 Quasi-ballistic and superdiffusive transport for impulsive solar particle events. Astron. Astrophys. 530, A130.CrossRefGoogle Scholar
Zaslavsky, G. M. 2002 Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461580.CrossRefGoogle Scholar
Zimbardo, G. 2005 Anomalous particle diffusion and Lévy random walk of magnetic field lines in three-dimensional solar wind turbulence. Plasma Phys. Control Fusion 47, B755B767.CrossRefGoogle Scholar
Zimbardo, G., Veltri, P. and Pommois, P. 2000a Anomalous, quasilinear, and percolative regimes for magnetic-field-line transport in axially symmetric turbulence. Phys. Rev. E 61, 19401948.CrossRefGoogle ScholarPubMed
Zimbardo, G., Greco, A. and Veltri, P. 2000b Superballistic transport in tearing driven magnetic turbulence. Phys. Plasmas 7, 10711074.CrossRefGoogle Scholar
Zimbardo, G., Greco, A., Sorriso-Valvo, L., Perri, S., Voeroes, Z., Aburjania, G., Chargazia, K. and Alexandrova, O. 2010 Magnetic turbulence in the geospace environment. Space Sci. Rev. 156, 89.CrossRefGoogle Scholar
Zimbardo, G. and Perri, S. 2013 From Lévy walks to superdiffusive shock acceleration. Astrophys. J. 778, 35.CrossRefGoogle Scholar
Zimbardo, G., Perri, S., Pommois, P. and Veltri, P. 2012 Anomalous particle transport in the heliosphere. Adv. Space Res. 49, 1633.CrossRefGoogle Scholar
Zimbardo, G., Pommois, P. and Veltri, P. 2006 Superdiffusive and subdiffusive transport of energetic particles in solar wind anisotropic magnetic turbulence. Astrophys. J. Lett. 639, L91L94.CrossRefGoogle Scholar
Zumofen, G. and Klafter, J. 1993 Scale-invariant motion in intermittent chaotic systems. Phys. Rev. E 47, 851863.CrossRefGoogle ScholarPubMed