Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T22:24:08.146Z Has data issue: false hasContentIssue false

Numerical study of self-interaction of Bernstein waves by nonlinear Landau damping

Published online by Cambridge University Press:  13 March 2009

Masao Sugawa
Affiliation:
Department of Physics, Faculty of Science, Ehime University, Matsuyama 790, Japan

Abstract

When Bernstein waves (B waves) are excited in a magnetized plasma, their self-interaction by nonlinear Landau damping (NLD) becomes the dominant mechanism for the electron heating of the bulk plasma. We examine this behaviour numerically. This occurs only for B waves with relatively small k because the damping of the B waves becomes very small. This occurs in the relatively broad B-wave frequency range betweenω/ωc = 1.45 and 1.78. For B waves with large k (kR > 0.15), virtual waves are not generated via self-interaction due to NLD because the quasi-linear cyclotron damping of the B waves becomes the dominant mechanism. The numerical results agree well with experimental ones.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, H., Okada, H., Itatani, R., Ono, M. & Okuda, H. 1984 Phys. Rev. Lett., 53, 1153.CrossRefGoogle Scholar
Chang, R. P. H. & Porkolab, M. 1972 Phys. Fluids. 15, 297.CrossRefGoogle Scholar
Okada, H., Abe, H., Itatani, R. & Ono, M. 1987 Plasma Phys. Contr. Fusion. 29, 743.CrossRefGoogle Scholar
Ono, M., Watari, T., Ando, R., Fujita, J., Hirokura, Y., Ida, K., Kako, E., Kawahata, K., Kawasumi, Y., Matsuoka, K., Nishizawa, A., Noda, N., Ogawa, I., Ohokubo, K., Okamoto, M., Sato, K., Tanahashi, S., Taniguchi, Y., Tetsuka, T., Toi, K. & Yamazaki, K. 1985 Phys. Rev. Lett. 54, 2339.CrossRefGoogle Scholar
Ono, M., Wurden, G. A. & Wong, K. L. 1984 Phys. Rev. Lett. 52, 37.Google Scholar
Porkolab, M. 1985 Phys. Rev. Lett. 54, 434.CrossRefGoogle Scholar
Porkolab, M. & Chang, R. P. H. 1972 Phys. Fluids. 15, 283.CrossRefGoogle Scholar
Rosenbluth, M. N., Coppi, B. & Sudan, R. N. 1969 Ann. Phys. (NY). 55, 248.Google Scholar
Shinohara, S., Naito, O., Ueda, Y., Toyama, H. & Miyamoto, K. 1986 J. Phys. Soc. Japan. 55, 2648.Google Scholar
Sugawa, M. 1988 a Phys. Rev. Lett. 54, 543.CrossRefGoogle Scholar
Sugawa, M. 1988 b J. Plasma Phys. 40, 87.Google Scholar
Sugawa, M. 1992 J. Phys. Soc. Japan. 61, 1848.CrossRefGoogle Scholar
Sugaya, R. 1987 Phys. Fluids 30, 1730.CrossRefGoogle Scholar
Sugaya, R. 1989 J. Phys. Soc. Japan. 58, 1611.Google Scholar
Sugaya, R., Fujita, H. & Ogawa, I. 1984 J. Phys. Soc. Japan. 53, 1950.Google Scholar
Sugaya, R., Sugawa, M. & Nomoto, H. 1985 J. Phys. Soc. Japan. 54, 1339.Google Scholar