Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T22:54:40.752Z Has data issue: false hasContentIssue false

Obliquely propagating ion-acoustic nonlinear periodic waves in a magnetized plasma with two electron species

Published online by Cambridge University Press:  13 March 2009

L. L. Yadav
Affiliation:
Department of Physics, University of Rajasthan, Jaipur 302 004, India
R. S. Tiwari
Affiliation:
Department of Physics, University of Rajasthan, Jaipur 302 004, India
S. R. Sharma
Affiliation:
Department of Physics, University of Rajasthan, Jaipur 302 004, India

Abstract

Obliquely propagating ion-acoustic nonlinear periodic waves in a magnetized plasma consisting of warm adiabatic ions and two Maxwellian electron species are studied. Using the reductive perturbation method, the Korteweg–de Vries (KdV) equation is derived and its cnoidal wave solution is discussed. It is found that as the amplitude of the cnoidal wave increases, so does its frequency. The effects of variations in the density and temperature ratios of the two electron species, the ion temperature, the angle of obliqueness and the magnetization on the characteristics of the cnoidal wave are discussed in detail. When the coefficient of the nonlinear term of the KdV equation, a1, vanishes, the modified Korteweg–de Vries equation is derived, and its periodic-wave solutions are discussed in detail. In the limiting case these periodic-wave solutions reduce to soliton or double-layer solutions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boström, R., Gustafsson, G., Holback, B., Holmgren, G., Koskinen, H. & Kintner, P. 1988 Phys. Rev. Lett. 61, 82.CrossRefGoogle Scholar
Das, K. P., Sluijter, F. W. & Verheest, F. 1992 Physica Scripta 45, 358.CrossRefGoogle Scholar
Goswami, K. S. & Bujarbarua, S. 1986 Phys. Fluids 29, 714.CrossRefGoogle Scholar
Gurevich, A. V. & Stenflo, L. 1988 Physica Scripta 38, 855.CrossRefGoogle Scholar
Ichikawa, Y. H. 1979 Physica Scripta 20, 296.CrossRefGoogle Scholar
Jeffrey, A. & Kawahara, T. 1982 Asymptotic Methods in Nonlinear Wave Theory, pp. 211213. Pitman.Google Scholar
Jones, W. D., Lee, A., Gleman, S. M. & Doucet, H. J. 1975 Phys. Rev. Lett. 35, 1349.CrossRefGoogle Scholar
Kauschke, U. & Schlüter, H. 1990 Plasma Phys. Contr. Fusion 32, 1149.CrossRefGoogle Scholar
Kauschke, U. & Schlüter, H. 1991 Plasma Phys. Contr. Fusion 33, 1309.CrossRefGoogle Scholar
Konno, K., Mitsuhashi, T. & Ichikawa, Y. H. 1979 J. Phys. Soc. Japan 46, 1907.CrossRefGoogle Scholar
Lee, L. C. & Kan, J. R. 1981 Phys. Fluids 24, 430.CrossRefGoogle Scholar
McBride, J. B., Ott, E., Boris, J. P. & Orens, J. H. 1972 Phys. Fluids 15, 2367.CrossRefGoogle Scholar
Nakamura, Y. & Tsukabayashi, I. 1985 J. Plasma Phys. 34, 401.CrossRefGoogle Scholar
Nayanov, V. I. 1986 JETP Lett. 44, 315.Google Scholar
Raadu, M. A. 1978 Astrophys. Space Sci. 55, 125.CrossRefGoogle Scholar
Raychudhuri, S., Hill, J., Forsling, P. J., Chang, H. Y., Sukarto, S., Lien, C. & Lonngren, K. E. 1987 Physica Scripta 36, 508.CrossRefGoogle Scholar
Raychowdhury, A., Pakira, G. & Paul, S. N. 1989 J. Plasma Phys. 41, 447.CrossRefGoogle Scholar
Synolakis, C. E., Deb, M. K. & Skjelbreia, J. E. 1988 Phys. Fluids 31, 3.CrossRefGoogle Scholar
Temerin, M., Cerny, K., Lotko, W. & Mozer, F. S. 1982 Phys. Rev. Lett. 48, 1175.CrossRefGoogle Scholar
Torvén, S. 1981 Phys. Rev. Lett. 47, 1053.CrossRefGoogle Scholar
Yadav, L. L. & Sharma, S. R. 1990 Phys. Lett. 150A, 397.CrossRefGoogle Scholar
Yadav, L. L. & Sharma, S. R. 1991 Physica Scripta 43, 106.CrossRefGoogle Scholar
Yashvir, Bhatnagar, T. N. & Sharma, S. R. 1984 Plasma Phys. Contr. Fusion 26, 1303.CrossRefGoogle Scholar