Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T03:40:31.939Z Has data issue: false hasContentIssue false

Poloidal eigenmode of the geodesic acoustic mode in the limit of high safety factor

Published online by Cambridge University Press:  10 March 2009

M. SASAKI
Affiliation:
Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan (sasaki@fusion.k.u-tokyo.ac.jp)
K. ITOH
Affiliation:
National Institute for Fusion Science, Toki 509-5292, Japan
A. EJIRI
Affiliation:
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
Y. TAKASE
Affiliation:
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan

Abstract

The poloidal eigenmode of the geodesic acoustic mode (GAM) is studied in the limit of high safety factor. In this limit, the poloidal gyroradius cannot be treated as a perturbation or as an expansion parameter. Analytical expressions for the poloidal structure of the GAM potential, the radial wavenumber dependence of the frequency, the phase velocity, and the group velocity are obtained. The spatial structure of the poloidal eigenmode including the higher-order gyroradius effect is revealed theoretically.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Diamond, P. H., Itoh, S.-I., Itoh, K. and Hahm, T. S. 2005 Plasma Phys. Control. Fusion 47, R35.Google Scholar
[2]Winsor, N., Johnson, J. L. and Dawson, J. J. 1968 Phys. Fluids 11, 2248.Google Scholar
[3]Itoh, K., Nagashima, Y., Itoh, S.-I. and Diamond, P. H. 2005 Phys. Plasmas 12, 102301.Google Scholar
[4]Itoh, K., Hollatschek, K. and Itoh, S.-I. 2005 Plasma Phys. Control. Fusion 47, 451.Google Scholar
[5]Chakrabarti, N., Singh, R., Kaw, P. K. and Guzdan, P. N. 2007 Phys. Plasmas 14, 052308.Google Scholar
[6]Sasaki, M., Itoh, K., Nagashima, Y., Ejiri, A. and Takase, Y. 2009 Phys. Plasmas 16, 022306.Google Scholar
[7]Rousenbluth, M. N. and Hinton, F. L. 1996 Phys. Rev. Lett. 80, 724.Google Scholar
[8]Sugama, H. and Watanabe, T.-H. 2006 Phys. Plasmas 13, 012501.Google Scholar
[9]Sasaki, M., Itoh, K., Ejiri, A. and Takase, Y. 2008 Plasma Fusion Res. 3, S1017.Google Scholar
[10]Watari, T., Hamada, Y., Nishizawa, A. and Todoroki, J. 2007 Phys. Plasmas 14, 112512.Google Scholar
[11]Sasaki, M., Itoh, K., Ejiri, A. and Takase, Y. 2008 Plasma Fusion Res. 3, 009.Google Scholar
[12]Itoh, S.-I., Itoh, K., Sasaki, M., Fujisawa, A., Ido, T. and Nagashima, Y. 2007 Plasma Phys. Control. Fusion 49, L7.CrossRefGoogle Scholar
[13]Itoh, K., Itoh, S.-I., Diamond, P. H., Fujisawa, A., Yagi, M., Watari, T., Nagashima, Y. and Fukuyama, A. 2006 Plasma Fusion Res. Rapid Commun. 1, 037.Google Scholar
[14]Sasaki, M., Itoh, K., Ejiri, A. and Takase, Y. 2008 Contrib. Plasma Phys. 48, 68.Google Scholar
[15]Ido, T. et al. 2006 Nucl. Fusion 46, 512.Google Scholar
[16]Conway, G. C. et al. 2008 Plasma Phys. Control. Fusion 50, 05509.Google Scholar
[17]Lan, T. et al. 2008 Plasma Phys. Control. Fusion 50, 045002.CrossRefGoogle Scholar
[18]Zhao, K. J. et al. 2007 Phys. Plasmas 14, 122301.CrossRefGoogle Scholar