Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T21:28:11.999Z Has data issue: false hasContentIssue false

The propagation of plasma waves near multiples of the electron gyrofrequency

Published online by Cambridge University Press:  13 March 2009

M. K. Andrews
Affiliation:
Imperial College, University of London
M. T. C. Fang
Affiliation:
Imperial College, University of London

Abstract

The dispersion relation for electrostatic plasma waves propagating at frequencies near the electron cyclotron harmonics has been evaluated, and used to determine the refractive index curves for varying values of the angle θ between the k vector and the ambient magnetic field B0 in a warm magnetoplasma. It is shown that, under certain circumstances (which are defined), the (@, θ) curves have the characteristic ‘nose’ shapes that are necessary to provide a reflexion in the ambient plasma. Thus, the oblique echo reflexion mechanism (McAfee 1968, 1969a, b), which accounts for the appearance of the resonance signals or ‘spikes’ at the plasma and upper hybrid frequencies fN and fT on topside ionograms, may also be applied to the plasma waves propagating at frequencies near the electron gyro-harmonics. The relatively high damping that occurs for θ # 90° severely restricts the ranges of θ and wave-number k over which the reflexion mechanism applies. The restriction is such that the damping is severe for all values of θ when k is large, and for all values of θ outside a cone of ∽ 2° centred on θ = 90° when k is small.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, M. K. 1969 Thesis, University of London.Google Scholar
Bernstein, I. B. 1958 Phys. Rev. 109, 10.CrossRefGoogle Scholar
Buckley, R. 1970 Plasma Waves in Space and Laboratory (eds. Thomas, J. O. and Landmark, B. J.), vol. 2, p. 129. Edinburgh University Press.Google Scholar
Calvert, W. & Mcafee, J. R. 1969 Proc. IEEE, 57, 1089.CrossRefGoogle Scholar
Clinkemaillie, A. 1970 Plasma Waves in Space and Laboratory (eds. Thomas, J. O. and Landmark, B. J.), vol. 2, p. 243. Edinburgh University Press.Google Scholar
Crawford, F. W., Harp, R. S. & Mantei, T. D. 1967 J. Geophys. Res. 72, 57.CrossRefGoogle Scholar
Dougherty, J. P. & Monaghan, J. J. 1965 Proc. Roy. Soc. A 289, 214.Google Scholar
Fried, R. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Leuterer, F. 1969 Plasma Phys. 11, 615.CrossRefGoogle Scholar
McAfee, J. R. 1968 J. Geophys. Res. 73, 5577.CrossRefGoogle Scholar
McAfee, J. R. 1969 a J. Geophys. Res. 74, 802.CrossRefGoogle Scholar
McAfee, J. R. 1969 b J. Geophys. Res. 74, 6403.CrossRefGoogle Scholar
Poeverlein, H. 1948 Sber. bayer. Akad. Wiss. (naturw. K) 1, 175.Google Scholar
Stix, T. H. 1962 Theory of Plasma Waves. McGraw-Hill.Google Scholar
Tataronis, J. A. & Crawford, F. W. 1970 Plasma Waves in Space and Laboratory (eds. Thomas, J. O. and Landmark, B. J.), vol. 2, p. 91. Edinburgh University Press.Google Scholar
Thomas, J. O. & Andrews, M. K. 1969 Plasma Waves in Space and Laboratory (eds. Thomas, J. O. and Landmark, B. J.), vol. 1, p. 3. Edinburgh University Press.Google Scholar
Thomas, J. O., Andrews, M. K. & Hall, T. A. 1970 Internal Rep. SP T 105–70. Imperial College.Google Scholar
Warren, E. S. & Hagg, E. L. 1968 Nature, 220, 466.CrossRefGoogle Scholar