Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T22:39:18.709Z Has data issue: false hasContentIssue false

Reformulation of quasi-linear theory

Published online by Cambridge University Press:  13 March 2009

Allan N. Kaufman
Affiliation:
Department of Physics and Lawrence Radiation Laboratory, University of California

Abstract

A new formulation of quasi-linear theory is presented, which allows for only resonant diffusion, caused by both growing and damped waves. Nonresonant terms do not appear in the diffusion equation, but contribute to wave momentum and energy, and ensure conservation of total momentum and energy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham-Shrauner, B., 1971 a J. Plasma Phys. 5, 141.Google Scholar
Abraham-Shrauner, B., 1971 b Phys. Fluids, 14, 889.CrossRefGoogle Scholar
Bernstein, I. & Engelmann, F. 1966 Phys. Fluids, 9, 937.CrossRefGoogle Scholar
Bernstein, I. & Klozenberg, J. 1971 J. Plasma Phys. 5, 135.CrossRefGoogle Scholar
Bodner, S. 1971 J. Plasma Phys. 5, 141.Google Scholar
Harris, E. G. 1970 Advances in Plasma Physics, vol. 3, p. 157 (eds. Simon, A. and Thompson, W.). New York: Interscience.Google Scholar
Kaufman, A. 1971 Phys. Fluids, 14, 387.Google Scholar
Kaufman, A. N. & Nakayama, T. 1970 Phys. Fluids, 13, 956.CrossRefGoogle Scholar
Klimontovich, Y. L. 1967 The Statistical Theory of Non-Equilibrium Processes in a Plasma. MIT Press.Google Scholar
Klozenberg, J. & Bernstein, I. 1970 J. Plasma Phys. 4. 595,CrossRefGoogle Scholar
Montgomery, D. & Bodner, S. 1971 J. Plasma Phys. 5, 131.Google Scholar
O'Neil, T., Winfrey, J. & Malmberg, H. 1971 Phys. Fluids, 14, 1204.CrossRefGoogle Scholar
Price, J. C. 1967 Phys. Fluids, 10, 1623.CrossRefGoogle Scholar
Rogister, A. & Oberman, C. 1968 J. Plasma Phys. 2, 33.CrossRefGoogle Scholar
Sagdeev, R. & Galeev, A. 1969 Nonlinear Plasma Theory (eds. O'Neil, T. and Book, D.). New York: Benjamin.Google Scholar
Vahala, G. & Montgomery, D. 1970 J. Plasma Phys. 4, 677.CrossRefGoogle Scholar