Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T22:48:30.394Z Has data issue: false hasContentIssue false

Relativistic nonlinear plasma waves in a magnetic field

Published online by Cambridge University Press:  13 March 2009

C. F. Kennel
Affiliation:
Centre de Physique Theorique de l' Ecole Polytechnique17, rue Descartes 75230 Paris Cedex 05
R. Pellat
Affiliation:
Centre de Physique Theorique de l' Ecole Polytechnique17, rue Descartes 75230 Paris Cedex 05

Abstract

We study five relativistic plane nonlinear waves: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfvén waves, linearly polarized transverse waves propagating in zero magnetic field, and finally the relativistic analogue of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an ‘electron–positron’ plasma guides us to equations which have the form of a one dimensional potential well. Our solutions indicate that a large-amplitude super luminous wave determines the average plasma properties, and not vice versa. For example, linearly polarized waves impose a plasma number flux equal to the relativistic addition of Nc/β and NVE, where N is the density, c the speed of light, β (>1) the ratio of the phase speed to c and VE the E × B speed measured in the frame moving with speed c/β with respect to the frame in which the phase speed is measured. The implications for cosmic ray acceleration in pulsar magnetospheres are considered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhiezer, A. I. & Polovin, R. V. 1956 Sov. Phys. JETP 3, 696.Google Scholar
Asseo, E., Kennel, C. F. & Pellat, R. 1975 Astron. Astrophys. Submitted.Google Scholar
Clemmow, P. C. 1974 J. Plasma Phys. 12, 297.CrossRefGoogle Scholar
Gold, T. 1968 Nature 218, 731.CrossRefGoogle Scholar
Goldreich, P. & Julian, W. 1969 Ap. J. 157, 869.CrossRefGoogle Scholar
Gunn, J. E. & Ostriker, J. 1969 Phys. Rev. Lett. 22, 728.CrossRefGoogle Scholar
Kaw, P. & Dawson, J. 1970 Phys. Fluids 13, 472.CrossRefGoogle Scholar
Kennel, C. F., Schmidt, G. & Wilcox, T. 1973 Phys. Rev. Lett. 31, 1364.CrossRefGoogle Scholar
Max, C. 1973 Phys. Fluids 16, 1277.CrossRefGoogle Scholar
Max, C. & Perkins, F. 1971 Phys. Rev. Lett. 27, 1342.CrossRefGoogle Scholar
Max, C. & Perkins, F. 1972 Phys. Rev. Lett. 29, 1731.CrossRefGoogle Scholar
Michel, F. C. 1969 Phys. Rev. Lett. 23, 248.CrossRefGoogle Scholar
Ostriker, J. & Gunn, J. E. 1969 Ap. J. 157, 1395.CrossRefGoogle Scholar
Pacini, F. 1968 Nature, 219, 145.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966 Rev. of Plasma Phys. 4.Google Scholar
Sturrock, P. 1971 Ap. J. 164, 529.CrossRefGoogle Scholar
Tidman, D. A. & Krall, N. 1971 Shock Waves in Collisionless Plasmas. Wiley.Google Scholar