Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T23:00:15.074Z Has data issue: false hasContentIssue false

Relativistic thermal electron scale instabilities in sheared flow plasma

Published online by Cambridge University Press:  08 March 2016

Evan D. Miller*
Affiliation:
Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA
Barrett N. Rogers
Affiliation:
Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA
*
Email address for correspondence: evanmiller124@gmail.com

Abstract

The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin–Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, E. P., Grismayer, T., Martins, S. F., Fiuza, F., Fonseca, R. A. & Silva, L. O. 2012 Large-scale magnetic field generation via the kinetic Kelvin–Helmholtz instability in unmagnetized scenarios. Astrophys. J. 746 (2), L14.CrossRefGoogle Scholar
Alves, E. P., Grismayer, T., Fonseca, R. A. & Silva, L. O. 2014 Electron-scale shear instabilities: magnetic field generation and particle acceleration in astrophysical jets. New J. Phys. 16, 035007.CrossRefGoogle Scholar
Alves, E. P., Grismayer, T., Fonseca, R. A. & Silva, L. O. 2015 Transverse electron-scale instability in relativistic shear flows. Phys. Rev. E 92, 021101.CrossRefGoogle ScholarPubMed
Biskamp, D. 2003 Magnetohydrodynamic Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Bret, A., Firpo, M.-C. & Deutsch, C. 2004 Collective electromagnetic modes for beam–plasma interaction in the whole K space. Phys. Rev. E 70, 046401.CrossRefGoogle ScholarPubMed
Fiuza, F. et al. 2012 Weibel-instability-mediated collisionless shocks in the laboratory with ultraintense lasers. Phys. Rev. Lett. 108, 235004.CrossRefGoogle ScholarPubMed
Gregori, G. et al. 2012 Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves. Nature 481, 480483.CrossRefGoogle ScholarPubMed
Grismayer, T., Alves, E. P., Fonseca, R. & Silva, L. O. 2013 DC magnetic field generation in unmagnetized shear flows. Phys. Rev. Lett. 111, 015005.CrossRefGoogle ScholarPubMed
Gruzinov, A.2008 GRB: magnetic fields, cosmic rays, and emissions from first principles? arXiv:0803.1182.Google Scholar
Gruzinov, A. & Waxman, E. 1999 Gamma-ray burst afterglow: polarization and analytic light curves. Astrophys. J. 511, 852861.CrossRefGoogle Scholar
Kulsrud, R. M. & Zweibel, E. G. 2008 On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71, 046901.CrossRefGoogle Scholar
Mahajan, S. M. 2003 Temperature-transformed ‘minimal coupling’: magnetofluid unification. Phys. Rev. Lett. 90, 035001.CrossRefGoogle ScholarPubMed
Medvedev, M. V. & Loeb, A. 1999 Generation of magnetic fields in the relativistic shock of gamma-ray burst sources. Astrophys. J. 526, 697706.CrossRefGoogle Scholar
Miller, E. & Rogers, B. 2015 Magnetogenesis through convection in barotropic fluids. Phys. Plasmas 22, 042104.CrossRefGoogle Scholar
Nishikawa, K. I. et al. 2013 Magnetic field generation in a jet-sheath plasma via the kinetic Kelvin–Helmholtz instability. Ann. Geophys. 31, 1535.CrossRefGoogle Scholar
Stockem, A. et al. 2014 Exploring the nature of collisionless shocks under laboratory conditions. Sci. Rep. 4, 3934.CrossRefGoogle ScholarPubMed
Synge, J. L. 1957 The Relativistic Gas. Interscience Publishers.Google Scholar
Weibel, E. S. 1959 Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar
Supplementary material: File

Miller and Rogers supplementary material

Miller and Rogers supplementary material 1

Download Miller and Rogers supplementary material(File)
File 1.8 MB