Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T03:14:28.180Z Has data issue: false hasContentIssue false

Resonant parts of nonlinear response tensors

Published online by Cambridge University Press:  13 March 2009

D. B. Melrose
Affiliation:
School of Physics, University of Sydney, Sydney, NSW 2006, Australia
J. Kuijpers
Affiliation:
Sterrekundig Instituut, Rijksuniversiteit Utrecht, Sterrewacht ‘Sonnenborgh’, Zonnenburg 2, 3512 NL Utrecht, The Netherlands

Abstract

It is pointed out that ambiguities arise in taking the resonant parts of nonlinear response tensors. A prescription is proposed and used to evaluate the resonant parts explicitly in terms of a covariant and gauge invariant formalism. Symmetry properties of the resonant parts are identified. The prescription used can be justified by analogy with a calculation based on QED where no ambiguity arises; it is also justified directly by classical arguments. In some standard treatments of nonlinear damping processes a necessary symmetry is not imposed. When this symmetry is imposed, the relations derived here imply that turbulent bremsstrahlung, as defined by Tsytovich et al., does not exist.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berestetskii, V. B., Lifshitz, E. M. & Pitaevskii, L. B. 1971 Relativistic Quantum Theory, Part I. Pergamon.Google Scholar
Bloembergen, N. 1965 Nonlinear Optics. Benjamin.Google Scholar
Buneman, O. 1958 Phys. Rev. 112, 1504.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Goto, K. 1972 Prog. Theor. Phys. Japan, 20, 1.CrossRefGoogle Scholar
Jackson, J. D. 1975 Classical Electrodynamics, 2nd edn.Wiley.Google Scholar
Klimontovich, Yu. L. 1959 Soviet Phys. JETP, 10, 524.Google Scholar
Kuijpers, J. 1980 Astron. Astrophys. 83, 201.Google Scholar
Kuijpers, J. & Melrose, D. B. 1984 The Non-existence of Two Forms of Turbulent Bremsstrahlung.CrossRefGoogle Scholar
Kurçunogˇlu, B. 1961 Nucl. Fusion, 1, 213.Google Scholar
Melrose, D. B. 1972 Plasma Phys. 14, 1035.CrossRefGoogle Scholar
Melrose, D. B. 1973 Plasma Phys. 15, 99.CrossRefGoogle Scholar
Melrose, D. B. 1974 Plasma Phys. 16, 845.CrossRefGoogle Scholar
Melrose, D. B. 1980 Plasma Astrophysics, vol. 2. Gordon and Breach.Google Scholar
Melrose, D. B. 1982 a Aust. J. Phys. 35, 67.CrossRefGoogle Scholar
Melrose, D. B. 1982 b Aust. J. Phys. 35, 41.CrossRefGoogle Scholar
Melrose, D. B. 1983 Aust. J. Phys. 36, 775.CrossRefGoogle Scholar
Melrose, D. B. & Parle, A. J. 1983 Aust. J. Phys. 36, 799.CrossRefGoogle Scholar
Nambu, M. 1981 Phys. Rev. A 23, 3272.CrossRefGoogle Scholar
Stoneham, R. J. 1978 Thesis, Australian National University.Google Scholar
Stoneham, R. J. 1979 J. Phys. A 12, 2187.CrossRefGoogle Scholar
Tsytovich, V. N. 1961 Soviet Phys. JETP, 13, 1249.Google Scholar
Tsytovich, V. N., Stenflo, L. & Wilhelmsson, H. 1975 Physica Scripta, 11, 251.CrossRefGoogle Scholar